Effect types and region-based
memory management:

!'_ A gentle introduction

Fritz Henglein, DIKU
2009-08-13

Based on Henglein, Makholm, Niss, “Effect type systems and region-based
memory management,” in Advanced Topics in Types and Programming
Languages, Benjamin Pierce (ed.), MIT Press, 2005

iOverwew

= Value flow analysis revisited

Region typing: Value flow analysis
reinterpreted

= Region inference: Trivial and principal
completions

= Scoped regions

= [ype and effect system

= Region and effect polymorphism
= Extensions (references)

iVaIue flow analysis

= Figuring out where values are created
and where those are destructed.

= Software understanding (e.g.,error
reporting)
»« Optimization (e.qg., constant folding)

= Interpretation (e.g., binding-time analysis,
dynamic/soft typing)

Value flow analysis:
iBasic problems

= Not a well-defined problem: Exact solution for
Turing complete languages is impossible
(Rice’s Theorem)

= Which specific value flow analysis problem
then?

= Ensuring correctness vis a vis operational
semantics

= Representing and exploiting result of value
flow analysis

Terms

t u= terms:

v value expression

X variable

tt application

if t thentelset conditional

fixx.t recursion

v o= value expressions:
AX.t abstraction

bv truth value

bv = truth values:

tt true

ff false
Evaluation rules t—t’
(AxX.t12) V2 — [x — v2ltq2 (E-BETA)

fixx.t — [x— fixx.t]t (E-FIXBETA)
if tt thent,; else t3 — ty (E-IFTRUE)
if ff thent, else t3; — t3 (E-IFFALSE)

ty — t]
, (E-APP1)
Lyt — € &2
tr — t)
. (E-APP2)
vyt — Vv &
ty — t] (E-TF)
. then t, . ; then t, -
if else t; — if t else t;

Types
T = types:
bool Boolean type
T—T function type
Typing rules Nt:T
x &I’
- (T-VAR)
Nx:T,I"Fx:T
"+Dbv:bool (T-BOOL)
"'ty :bool
Nt T N=t3:T
. (1-1F)
"HFif £ty thentr elset3: T
Nx:TyFHE:T2
(T-ABS)
NEAxt: Ty —= T
MNEto: Ty — T N=ty:T
0Ty 2 1T (T-APP)
NEtoty: Ty
Nx:THE:T
(T-FIX)
N-fixxt: T
Derived form
letx=t; intr % (Ax.t1) t;

Figure 1-1: Base language BL.

iBasic notions:

s A closed term t is final if it cannot be
reduced.

= All values are final.

= All other final terms are called stuck terms
(or stuck states); they signal the
occurrence of a (type) error, e.qg., true
false.

s t 2% v: Closed term t evaluates to
value v.

i Value-flow analysis: Example

EXAMPLE: Consider the BL-program to:

let fst= Au.Av.u in

(letx=Ap.ptt £ff inAyv.Aq.g(x fst)vy)
tt

Value flow analysis should tell us that x may be applied to £st (which is
rather easy to see), £st may be applied to tt (which is not immediately
obvious from the source code), and the A-abstraction Ay.Ap.p (x £st) y may
be applied to tt, but Ap.p (x £st) y is not applied anywhere.

Typed instrumentation

= Instrument source language with annotations that
admit the intended observations (completion of
underlying program)

= Provide operational semantics for annotations
= Extend static semantics (type system) to annotations

= Show that annotated language preserves underlying
source language semantics:

= Partial correctness. Any completion gives same
result as underlying program or goes wrong

= Soundness: Any well-typed completion does not
go wrong (does not get stuck).

= Corollary. Any well-typed completion is correct.

Typed instrumentation for
ivalue flow analysis

= Tags (labels): p;, p,, ...

= [agging operation: tat p
= Untagging operation: t/p
= Intuition:

= tat p: names “the value” of t, where t is usually a
value (constructor) expression (in BL: true, false
or a A-abstraction)

« t ! p: expresses that t evaluates to a value with
name p is used here, where t is usually a term in
destructive context (in BL: if [] then t1 else t2, []

t)

New terms

t o= ... terms:
tatp tagging
tlp untagging

v o= value expressions:
Vp tagged value

p = label expressions:
) label variable

New evaluation rules t —t’
t—t’
(E-TAG)

tatp—t'atp
vat p— (v), (E-TAGBETA)

t — tf

, (E-UNTAG)
tlp—t !p

/ \

(V)

V), 'p— v

(E-UNTAGBETA)

New types
T = ... types:
T at p tagged value type
New typing rules M-t:T
FM-c:T
(T-TAG)
NFtatp:Tatp
Nt:Tatp
(T-UNTAG)
Nt!lp:T
MNe=wv:T
- (T-TAGVALUE)
FE{v),:Tatp

Figure 1-2: Tagged Language, TL (Extension of BL)

Observations
= The operational semantics consists

of:

« the evaluation rules for BL (T1 rules), plus

= evaluation rules for the new construc
rules)

= The type system consists of:
» the type rules for BL
= type rules for the new constructs

s (T2

Erasures and completions

DEFINITION [ERASURE, COMPLETION]: Let t & TL. Then the erasure
term t is defined as follows:

t| of

1=l = x
ltr e2]] = ltq]l [t
|if t1 thenty else t3|| = if ||t1|| then |t2] else ||t3]|
[fixx.t|| = fixx.|t]
IAx.t|]| = Ax.||t]
ltt]] = tt
|£EE|| = f£€£
ltatp|l = it
lttell = [t
[l = Il

Conversely, we call a TL-term t’ a completion of BL-term t if ||t/|| = t. O

iCon/decon completions

Con/decon completions ensure that each

constructor is tagged and each destructive position
is untagged, and nothing else.

Con/decon completion templates

v o= .
t o= (Ax.t)at p abstraction

v bv at p truth value

x bv = truth values:

(tlplt tt true
if(t!p)thentelset £f false

' fixx.t] I

Figure 1-3: Con/decon completions

Value-flow analysis:
Example continued

EXAMPLE: Consider the BL-program to:

let fst= Au.Av.u in
(letx=Ap.ptt ff inAy.Aq.g(x fst)vy)
tt

The following con/decon completion t of to captures this:

let fst= AiyuA,v.u in

(let x = A p.((p'* ttlt]lb ff1,) in
ALy ALa((gle (x £5t)) v))

tty,

To make the completion more readable, we have written A x.t for (Ax.t) at p,

bv, for bv at p, and (tP t’) for (t ! p) t’. O

Correctness Theorem

Any well-typed completion of a BL-term
computes the same result as the BL-term
itself:

COROLLARY [CORRECTNESS]: Let t be a closed TL-term and v a TL-value.

1. t Tifand only if ||t| T.

2. Jlt]l 2" [[v|| if and only if there exists a TL-value v’ such that [[v'|| = |[v]|
*

T
and t — v'. 0

Partial correctness
iand soundness

= Correctness is a corollary of:

= Partial correctness: Any completion computes the
same result or goes wrong

= Soundness: No well-typed completion goes wrong.

= Note:

« Partial correctness is independent of the type
system; it is a property of the evaluation rules
(instrumented operational semantics) alone.

= Soundness is a property of the type system. It
doesn’t say anything about the relation of the
computed result to the result of the underlying
term (its erasure).

* Partial correctness

LEMMA [SIMULATION]: Let t,ty, t; range over TL-terms.

1. If v is a value expression then so is ||v]||.
2. =2 s strongly normalizing.
3. Ift; -5 £, then ||tq]| == ||t2l.

4. Ifty =2t then ||t1] = ||t2]|

THEOREM [CONDITIONAL CORRECTNESS]|: For TL-terms t, t’ we have:
T ", BL * .,

1. Ift — t/then|t]| — [|t/].

2. If £ T then ||t]|| T.

3. If||t|| gets stuck then t gets stuck, too.

Soundness

Soundness is proved by showing that
e a well-typed term cannot be stuck (progress)
o well-typedness is preserved under reduction (preservation)

LEMMA [SUBJECT REDUCTION (PRESERVATION)]|: Let t,t’ be TL-terms. If
T
N-t:Tandt — t'then"+t’: T. O

LEMMA [PROGRESS]: If F t : T then either t = v for some value (closed
. . T
value expression) v or there exists t’ such that t — t’. O

THEOREM [SOUNDNESS]: If F t : T then evaluation of t does not get stuck.
O

iTriviaIity and Principality

= Any well-typed completion represents correct
value flow information, but does it always
represent useful value flow information?

= The trivial con/decon completion, which tags/
untags with a single label p,, provides no useful
(new) information; it is basically just a trivial
embedding of the underlying term into the
language of con/decon completions.

= Is there a principal completion? That is, one
whose value flow information subsumes the
value flow information of any other
completion of the same term?

iPrincipaI completions

= Definition:

« Completion t subsumes t’ if there exists a
substitution S on labels (only) such that

S(t) =t
« Completion t is principal for ||t|| if it
subsumes all completions of ||t|].
= Theorem: Each ||t|| has a principal
completion.

Notes:

= The value flow analysis captured by principal
completions here corresponds to Simple Value
Flow Analysis (equational value flow
analysis).

= Monovariant VFA (aka OCFA) can be captured
by extended the label language with
disjunctions (label sets) with attendant
subtyping rules.

= SVFA and MonoVFA can be extended to
polymorphic VFA.

iObservations

= Value flow information has an operational
semantics of its own: it can be executed!

= The instrumented language (annotations and
operational semantics) captures ‘exactly’
value flow analysis: a completion of a closed
term v of type bool contains semantically
correct value flow information if its evaluation
does not go wrong.

= The type system limits correct completions to
a well-specified set of correct completions, for
each of which it is feasible to verify its
correctness.

From VFA to region-based
imemory management

= Recall that well-typed completions with
tagging and untagging operations represent
correct value flow information

s Idea:

= Reinterpret labels as regions: a region is a chunk
of extendible memory

= Reinterpret t at p: allocate the value of tin region
p and return pointer to value.

= Reinterpret t / p: Check that t evaluates to a
pointer into p and fetch the value for it. Note:
The check can be elided---it is alwas true---for

well-typed completions.

iProbIem: Global regions!

= Tags are global.

= Value flow information does not say anything
when regions come into existence (get
allocated) and when they cease to exist (get
deallocated and underlying memory recycled)

= Need to do /ifetime analysis for regions and
represent result of analysis operationally.

iScoped regions: Basic idea

= Consider a value flow judgement
I" |- t: T and consider a region (tag) p that
occurs in t. Then, intuitively,

= If p does not occur in I" then the environment in
which t evaluates contains no values in p.

= If p does not occur in T then no values stored in p
are returned to the context of t.

= S0 p can be allocated before evaluation of t,
accessed during evaluation of t, and then
deallocated upon termination of evaluation of t.

= Introduce region-scoped term: new p. t

; Naively region-scoped TL

New terms t—t'
. — (E-NEW)
t cos . terms: newp.t —s new p.t
new p.t region-scoped term
, newp.v — [p — v (E-NEWBETA)
p = label expressions:
. deleted/inaccessible region) | New typing rules FEt:T
. ST .
New evaluation rules t—t’ FRe:T

p & frv([[T)
NFnewpt:T

Figure 1-4: Scoped Tagged Language (unsound), STL (Basis: TL)

(T-NEWUNSOUND)

Problem: Unsoundness!

EXAMPLE: Consider the following STL-term t¢ =

newpp.let x =tt at pp inAy.if x! ppo thenyelse £f at p;
It reduces as follows:

newpo.let x =tt at po inAy.if x! po thenyelse ff at p1 —
new pp.let x = (tt)po inAy.if x! pp theny else f£f at p; —
new po.Ay.if (tt), !pothenyelseff at p; o
Ay.if (tt), ! e thenyelse ff at p;

Ay.if (tt), ! e thenyelse ff at p;

is a value; it is not stuck. It is easy to see, however, how it can give rise to a

stuck state. The program t¢ (tt at p;) is a well-typed STL-program of type
bool at pi, yet evaluation gets stuck:

tf(tt at py) —
(Ay.if (tt), ! @ thenyelse ff at py) (tt at p;) —

if (tt), ! e then ff at p; else £f at p;

i Effects

= Type of lexical closures does not include
mention types of environment part

= Environment part may be accessed
after closure is computed.

s Idea:

« Capture not only type of result value of

lexical closure, but also effect of its
computation on environment part.

* Effect type judgements

The basic effect type judgement is
M=tc:*T

where @ is an ¢ffect expression (henceforth simply called effect) and “T is an
effect type or type and effect. The judgement should be read informally as “Un-
der the assumptions I', the evaluation of t may have the observable effect o,
and it eventually yields a value of type T, if any.” For program analysis pur-
poses observable may also be understood as interesting. When an evaluation
has no observable effect, we say it has the empty effect, written (), and T is
abbreviated to T.

For RBMM: effect = the regions (possibly) accessed
during evaluation.

Terms

t = terms:
v value expression
x variable
tt application
if t thent elset conditional
tatp tagging
t!lp untagging
newp.t label-scoped term
fixx.t recursion
v ou= value expressions:
AX.t abstraction
bv truth value
V)p tagged value
bv = truth values:
tt frue
ff false
p o= label/region expressions:
P label fregion variable)
. deleted/inaccessible label/region)
Effect expressions
@ == 1p,...,p} effect expressions:
Types
T == types:
bool Boolean type
T— 9T function type
Tatp tagged value type

Effect typing rules [R |
xgT’
(TE-VAR)
Nx:T,MNMEFx:®T
"FDbv:? bool (TE-BOOL)
M-ty :¥Y bool
MEty:®T MNe=t3:9T
(TE-IF)
Fif £ty thenty; elset; P T
Nx:TyFt:%2T,
(TE-ABS)
Ne=Ax.t:9' 717y — 927,
Nt P Ty —= 9T
M-ty :9 Ty
(TE-APP)
MN-toty:¥ Ty
r-=tc:vT =
A (TE-AT)
NFtatp:YTatp
NEt£:?Tat €
P _P"% (rg-From)
Nt!lp:®T
MEv:eT
—— (TE-CELL)
ME(v), ¥ Tatp
FMEe:eT Z frv(l,T
P 7 ,() (TE-NEW)
I newp.t :@—{ehT
Nx:THE:¥T
(TE-FIX)

M- fixxt:¥T

Figure 1-5: Scoped effect typed language ETL(sound).

* Example reconsidered

EXAMPLE: Consider the term
tf =newpp.let x =tt at po inAyv.if x! po thenyelse ££f at p;

from Example 1.2.20 again. Whereas it is typable in STL even though it gets
stuck when applied to an argument, it is not typable in ETL. To see this, con-
sider the let-expression t

letx=ttat poinAy.if x! pothenvyelse £f at p;

inside ty. Its ETL effect type Ty is (Po/(bool at p; — PeJbool at p;). Note
that po occurs in the effect, but neither in the function type’s domain nor
its range type. This reflects the fact that an application of t{ may access re-
gion po. Since po € frv(bool at p; — (P%'bool at py) Rule (TE-NEW) is not
applicable, and so there is no way of inferring a type for t¢, which indeed
would be unsound. O

Region and effect
polymorphism

= Monomorphic RBMM has very limited practical
utility since it does not provide context
indepence for function calls:

= multiple calls to the same function require that
respective arguments and results are put into
same region.

= Introduce region polymorphism: Regions may
be parameters to functions

= Polymorphic RBMM with a monomorphic
recursion rule is of limited practical utility:

= (multiple) recursive calls put values in same
region.

= Introduce polymorphic recursion.

Terms

t = terms:
u value or almost value

X variable

if t thentelset conditional
fixx.u recursion

tt application

t [p] region app.

new p.t letregion

u = almost values:
v value

(Ax.t) at p abstraction

(Ap.u) at p region abs.

v ou= value expressions:
bv truth value
(Ax.t), closure
(Ap.u), region closure

bv = truth values:
tt true

ff false

p = places:
p region variable

. deallocated

Evaluation £ 22 g
€1 — & (RE-TF)
: then t; : / then t; -
if ty else t3 » if t1 else t3

if tt thent, else t3 — t, (RE-IFTRUE)
if ff thent; else t3 — t3 (RE-IFFALSE)

t) — £t
1 (RE-APP1)
tit— L) T2
ty — t)
- (RE-APP2)
vyt — vyt
Ax.t at p — (Ax.t), (RE-CLOS)
(Ax.t), v— [x— V]t (RE-BETA)
u—u’
(RE-FIX)

fixxu— fixxu’

fixxwv

— [x = fix x.v]v (RE-FIXBETA)

i (RE-RAPP)

t[p] — t’' pl
Apruat pr — (Apr.u),, (RE-RCLOS)
(Ap1.u),, [Pl — [p1 — plu (RE-RBETA)

ty — ty
(RE-LETREG)

new p.t; — newp.t]

newp.v — [p — o]v (RE-DEALLOC)

Figure 1-6: Region-annotated language, RAL

iNote:

= Dereferencing operations are implicit
here.

Example

For example, consider the following program to compute Fibonacci num-
bers®

fix fib. An.

i1f n<2 then 1
else fib(n-2)+fib(n-1)

One possible region annotation of this program is (ignore everything but the
first line for now)

fix fib. (Ap;. (Apo. (An.
if new p. (n < (2 at p) then 1 at p,)
else new p1.
new p2.fib[p2]llp1] (new p.n -.cp, (2 at p))

+at p.new p3.f£ib[ps]lpi]l (new p.n -.cp, (1 at p))
) at pi) at pi) at pg

i Completions for RAL.

|bv| = bwv
then t; , then ||ty
if to = if |ty
else t; else |[t2
=] = =x
[(Ax.t) at p| Ax. |t
||-(7\x.t)p|| = Ax.|t]|

€1 2]
|fix x.u|
|lnew p.t||

[(Ap.u) at p|
[Ao-w)y |
It el

= [leall fle2]

Figure 1-7: Definition of the erasure function

Type expressions

MNEto:¥ (Ty — ¥2T,,p)

p < Place places
e < EffVar effect variables
@ < PgalPlace U EffVar) effects
T :u= type expressions:
X type variable
bool Boolean type
(T — 9T, p) function type
(TTp.YT, p) region func.
VX.T type polymorphism
Ve.T effect polymorphism
Typing rules NrEe:@T
Mx)=T
— (TT-VAR)
MN-x:¢T
N+ bv:¥ bool (TT-BOOL)
Nty :% bool
M=t:®T FEt3:9T
(TT-1F)
'HFif t; thenty;elset; ¥ T
Nx:TyFt:¥2T, €
: 2 PE® (rr-aBy)
N-=(Ax.t)at p:¥ (Ty — 92Ty, p)
Nx:TyFHt:¥2Ty
(TT-CLOS)

ME(Ax.t), @ (T) — ©2T2,p)

M-ty @T €) C
1 | Ppe@ P2 - P (TT-APP)
NEtoty:¥ Ty
Fx:TFu:®T
(TT-FIX)
M- fixxu:¥ T
FrNFu:®' T péfv(il) peeo
M- (Ap.u) at p:® (Mp.9'T,p)
(TT-RABS)
MEw:®' T Z frv(Tl
T e#WD o Reros)
M- ()\p.u)p @ (TTp.? T,p)
Mt :@ (TTp.?" T, p)
E — /! ! (:
pee [p—=ple’Co (TT-RAPP)

FrEefp’l:? [p—p'lT
MN=t:@PT p & frv(l[T)
NFnewp.t:¥T

(TT-LETREG)

FEe:®T X¢&ftv(N)

, (TT-TGEN)

Nt P ¥YX.T

M-t :?vX.T
(TT-TINST)

N-t:? [X— TT
M@ T fev (T,

cgfevih o) rrEGEN)

M-t :% Ye.T

M-t % VYe.T
(TT-EINST)

N-t:® le— @’|T

Figure 1-8: The RTL region type system

iCorrectness

= RAL is partially correct.

= RTL (variant of Tofte-Talpin region type
system) is sound.

= Consequently, RTL is correct.

= Follows from simple syntactic
techniques (as illustrated before)

The need for effect
i polymorphism

Consider the function map. Its region type is

Yo, Bl — PB) x (x 1ist, p) — P V(3 14ist, p’)

Note that the effect and region variables must be
universally quantified to allow map application

in multiple contexts with cross contamination of
region and effect information.

New syntactic forms

t o= ... terms:
(tot)atp list constructor
case ty of (;l}fz{’;‘tz case on lists

v ou= ... values:
(viv), cons Cf’l /
nil empty list

T == ... types:
(T 1ist,p) type of lists

New erasure rules
|Inil]] = mnil
[(trze2)atp| = |1l = [tz
[(t1=e2) || = leall = ezl
nil=t,
Hcase to of (x>t
nil=||tq||
case |tol| of (X::X,)#"‘tz“

New evaluation rules t 22h ¢/
£y — t]

™ (E-CONS1)

(tyzty)atp — (t]nty)atp

t) — t}

(E-CONS2)

(vista)at p — (v = th)atp

(vi:v2)atp zat, (v = V2>p
(E-CONSALLOC)
to — th
casetpofnil =t |(x:x') = t,
—caset{ofnil=t|(x:x')=t;

(E-CASE)
casenilof nil =t | (x1x’) =t —5 t,
(E-CASENIL)

case (viv’) ofnil =ty | (x:x') =t

—s [x' = v][x — V]t

(E-CASECONS)

New typing rules M-t:®T
NFnil:® (Tlist,p) (RT-NIL)
"ty:®T
'Ety:®(Tlist,p) =
Pl PEP (rr-cons)

FE(tyot)atp:®? (Tlist,p)
MEwvy:®eT MNEwvy:® (Tlist,p)

ME(vy V2>p @ (Tlist,p)
(RT-CONSCELL)

M-t : T/ T = (T list,p) pEQ@
M=ty :@eT” Nx:T,x":T'Fty:@T”
'k case to of l}?lxl,?;‘tz A
(RT-CASE)

Figure 1-9: Extending the system with a list type

Game of Life:
* Tofte/Talpin completion

let rec nextgen(g) = (read g;create and return new generation)
let rec life(n,g) = if n=0 then g

else life(n-1,nextgen(g))

letrec nextgen|[p] (g) = (read g from p; create new gen. at p)
letrec life[pn,pgl (n,g) =

if n=0 then g
else newp.

in lifel[p),pgl ((n-1) at p,, nextgen[pg] (g))

Note:
e life not tail recursive!

e result of nextgen must be in same region as argument

Region inference (Tofte/
i Birkedal 2001)

= Inference for expressions:

= Build derivation template with uniquely occurring
region and effect (meta)variables

= Collect equational constraints between region
variables and containment contraints between effects
variables

= Normalize (eliminate) constraints by producing
substitution and making scoped region decisions

= Types of fixpoints (recursive functions):

= Employ Kleene-Mycroft iteration: Assume “"most
polymorphic” type for recursive occurrences of
function, compute type according to process above.

= Does that terminate?

Region inference: Example

letrec m(f) = if £(0) then 0 else m(Ax.f(x+1)) + 1
in m(Ax.x=10)

Assume that the recursive occurrence of m has type

Yer, e2.1p1, 02.1P2((int — ¥Vbool, p1) — t62:€1P1int o).

MNMkEx:%4 int

MEg:@ (int — “3bool, p3) MEFx+1:%% int

ME £ (x+1) :** bool

F'Empa,ps] ¥ ((int — ®4bool,ps) — P5int, ps) M (Ax.£ (x+1)) at ps ¥ (int — Y4bool, ps)

F'Fm[pa, ps] ((Ax.£f (x+1)) at ps) :¥ int

where Mism : Ve, €2.1Tp1, p2.1P2} ((int — *V'bool, py) — t€251P1lint ps), £ : (int — ®3bool, p3) and
MNMisMx:int.
Collected effect constraints: @4 C @5, pa € @5, {p5} S @, ©3 C 94,03 € ©4,pa € 9, 5 S @, p5 € @.

|
Figure 1-10: A partially region-inferred proof tree.

i Musings

= Tofte/Birkedal’s inference is not known to
produce a principal completion for input programs
(under suitable definition of subsumption for
polymorphic types).

= Tofte/Talpin’s region system (of which RTL is a

variant) seeks to be ‘purely’ equational, but does
generate effect subtype constraints.

= Yet it does not have any subtype qualifications in
its polymorphic types (which are usually required
when combining parametric polymorphism and
subtyping for principality)

Extensions to Tofte/Talpin
iregion inference

= Birkedal-Tofte-Vejlstrup: Region resetting in
ML Kit

= Aiken-Faehndrich-Levin: Reducing lag and
drag by moving allocation and deallocation
sites closer to first, resp. last region access

= Walker-Crary-Morrisett, Walker-Watkins,
Henglein-Makholm-Niss: Typing calculi for
decoupled allocation and deallocation
operations

Extensions to Tofte/Talpin

iregion inference

Cyclone (Grossman et al., Fluet-Morrisett):
region lifetime subtyping

Vault (Faehndrich-DeLine): safe transitions
between linear and nonlinear usage

Boyapati-Salcianu-Beebee-Rinard: Ownership
types and regions

Christiansen-Velschow, Chin-Craciun-Qin-
Rinard: region inference for OO languages

Makholm-Sagonas: region inference for logic
programs

iContributions

= Region-based memory management as
nonstandard interpretation of type-based
value flow analysis

s Correctness = Partial correctness +
soundness

= Partial correctness (by partial simulation): depends
only instrumented semantics (w/o type system)

= Soundness (by progress and preserveation):
depends only on type system

= Very simple proofs!

Type-based analysis:
“The method”

Instrumented typed semantics:

= additional constructs (annotations), with

= oOperational semantics and

= type system for annotated language
TBA specifies solution space (completions). Set of all possible
derivations for given source program

= Correctness: partial correctness + soundness (or: proof by coherence of

completions, e.g. Henglein, "Dynamic Typing: Syntax and Proof Theory”,
SCP, 1994)

= Quality: Choice between completions, from trivial to principal, depending
on context (e.g., based on a subsumption theory for completions)

Analysis = transformation: Source program - well-typed annotated
program. (The well-typed annotated program /s the result of the
analysis.)

Exploitation of analysis = (possibly nonstandard) implementation or
further processing of annotated program

Game of Life (Postscript):
ML Kit with Regions

let rec copy(g) = (read g; make fresh copy)
let rec life’ ((n,g) as p)
= 1f n=0 then p
else life’ (n-1,copy(nextgen(g)))
let rec life(p) = snd (life’ (p))

letrec nextgen[p,p’] (g) = (read g from p;new gen. at p’)
letrec copy(p’,p]l (g) = (read gfrom p’; fresh copy atbot p)
letrec life’ [pn,pq] ((n,g) as p)
= 1f n=0 then p
else life’ [pn,pq] ((n-1) atbot p,,
new p;

in copy [pg, atbot py]

(nextgen [pg, pgl (9)))
letrec life[p,,pgl (p) = snd (life’ [py,,pgl (P))

i Exercises

= Read "“Effect types and region-based
memory management”, 3-3.3 (plus the
rest at your leisure). Skip the “"Notes”
sections the first time around.

= Do the following exercises: 3.2.4-3.2.6,
3.3.2, 3.4.2, (3.2.11)

= STL is unsound. Is there a way of
restricting the language instead of
adding effects to ensure soundness?

