
Effect types and region-based
memory management:
A gentle introduction

Fritz Henglein, DIKU
2009-08-13

Based on Henglein, Makholm, Niss, “Effect type systems and region-based
memory management,” in Advanced Topics in Types and Programming
Languages, Benjamin Pierce (ed.), MIT Press, 2005

Overview
  Value flow analysis revisited
  Region typing: Value flow analysis

reinterpreted
  Region inference: Trivial and principal

completions
  Scoped regions
  Type and effect system
  Region and effect polymorphism
  Extensions (references)

Value flow analysis

  Figuring out where values are created
and where those are destructed.

  Why?
  Software understanding (e.g.,error

reporting)
  Optimization (e.g., constant folding)
  Interpretation (e.g., binding-time analysis,

dynamic/soft typing)

Value flow analysis:
Basic problems
  Not a well-defined problem: Exact solution for

Turing complete languages is impossible
(Rice’s Theorem)

  Which specific value flow analysis problem
then?

  Ensuring correctness vis a vis operational
semantics

  Representing and exploiting result of value
flow analysis

Basic notions:
  A closed term t is final if it cannot be

reduced.
  All values are final.
  All other final terms are called stuck terms

(or stuck states); they signal the
occurrence of a (type) error, e.g., true
false.

  t * v: Closed term t evaluates to
value v.

Value-flow analysis: Example

Typed instrumentation
  Instrument source language with annotations that

admit the intended observations (completion of
underlying program)

  Provide operational semantics for annotations
  Extend static semantics (type system) to annotations
  Show that annotated language preserves underlying

source language semantics:
  Partial correctness: Any completion gives same

result as underlying program or goes wrong
  Soundness: Any well-typed completion does not

go wrong (does not get stuck).
  Corollary: Any well-typed completion is correct.

Typed instrumentation for
value flow analysis
  Tags (labels): p1, p2, ...
  Tagging operation: t at p
  Untagging operation: t ! p
  Intuition:

  t at p: names “the value” of t, where t is usually a
value (constructor) expression (in BL: true, false
or a λ-abstraction)

  t ! p: expresses that t evaluates to a value with
name p is used here, where t is usually a term in
destructive context (in BL: if [] then t1 else t2, []
t)

Observations
  The operational semantics consists of:

  the evaluation rules for BL (T1 rules), plus
  evaluation rules for the new constructs (T2

rules)

  The type system consists of:
  the type rules for BL
  type rules for the new constructs

Erasures and completions

Con/decon completions

Con/decon completions ensure that each
constructor is tagged and each destructive position
is untagged, and nothing else.

Value-flow analysis:
Example continued

Correctness Theorem

Any well-typed completion of a BL-term
computes the same result as the BL-term
itself:

Partial correctness
and soundness
  Correctness is a corollary of:

  Partial correctness: Any completion computes the
same result or goes wrong

  Soundness: No well-typed completion goes wrong.

  Note:
  Partial correctness is independent of the type

system; it is a property of the evaluation rules
(instrumented operational semantics) alone.

  Soundness is a property of the type system. It
doesn’t say anything about the relation of the
computed result to the result of the underlying
term (its erasure).

Partial correctness

Soundness
Soundness is proved by showing that
•  a well-typed term cannot be stuck (progress)
•  well-typedness is preserved under reduction (preservation)

Triviality and Principality
  Any well-typed completion represents correct

value flow information, but does it always
represent useful value flow information?
  The trivial con/decon completion, which tags/

untags with a single label ph, provides no useful
(new) information; it is basically just a trivial
embedding of the underlying term into the
language of con/decon completions.

  Is there a principal completion? That is, one
whose value flow information subsumes the
value flow information of any other
completion of the same term?

Principal completions

  Definition:
  Completion t subsumes t’ if there exists a

substitution S on labels (only) such that
S(t) = t’.

  Completion t is principal for ||t|| if it
subsumes all completions of ||t||.

  Theorem: Each ||t|| has a principal
completion.

Notes:
  The value flow analysis captured by principal

completions here corresponds to Simple Value
Flow Analysis (equational value flow
analysis).

  Monovariant VFA (aka 0CFA) can be captured
by extended the label language with
disjunctions (label sets) with attendant
subtyping rules.

  SVFA and MonoVFA can be extended to
polymorphic VFA.

Observations
  Value flow information has an operational

semantics of its own: it can be executed!
  The instrumented language (annotations and

operational semantics) captures ‘exactly’
value flow analysis: a completion of a closed
term v of type bool contains semantically
correct value flow information if its evaluation
does not go wrong.

  The type system limits correct completions to
a well-specified set of correct completions, for
each of which it is feasible to verify its
correctness.

From VFA to region-based
memory management

  Recall that well-typed completions with
tagging and untagging operations represent
correct value flow information

  Idea:
  Reinterpret labels as regions: a region is a chunk

of extendible memory
  Reinterpret t at p: allocate the value of t in region

p and return pointer to value.
  Reinterpret t ! p: Check that t evaluates to a

pointer into p and fetch the value for it. Note:
The check can be elided---it is alwas true---for
well-typed completions.

Problem: Global regions!
  Tags are global.
  Value flow information does not say anything

when regions come into existence (get
allocated) and when they cease to exist (get
deallocated and underlying memory recycled)

  Need to do lifetime analysis for regions and
represent result of analysis operationally.

Scoped regions: Basic idea
  Consider a value flow judgement
Γ |- t: T and consider a region (tag) p that
occurs in t. Then, intuitively,
  If p does not occur in Γ then the environment in

which t evaluates contains no values in p.
  If p does not occur in T then no values stored in p

are returned to the context of t.
  So p can be allocated before evaluation of t,

accessed during evaluation of t, and then
deallocated upon termination of evaluation of t.

  Introduce region-scoped term: new p. t

Naively region-scoped TL

Problem: Unsoundness!

Effects

  Type of lexical closures does not include
mention types of environment part

  Environment part may be accessed
after closure is computed.

  Idea:
  Capture not only type of result value of

lexical closure, but also effect of its
computation on environment part.

Effect type judgements

For RBMM: effect = the regions (possibly) accessed
during evaluation.

Example reconsidered

Region and effect
polymorphism

  Monomorphic RBMM has very limited practical
utility since it does not provide context
indepence for function calls:
  multiple calls to the same function require that

respective arguments and results are put into
same region.

  Introduce region polymorphism: Regions may
be parameters to functions

  Polymorphic RBMM with a monomorphic
recursion rule is of limited practical utility:
  (multiple) recursive calls put values in same

region.

  Introduce polymorphic recursion.

Note:

  Dereferencing operations are implicit
here.

Example

Completions for RAL.

Correctness

  RAL is partially correct.
  RTL (variant of Tofte-Talpin region type

system) is sound.
  Consequently, RTL is correct.
  Follows from simple syntactic

techniques (as illustrated before)

Consider the function map. Its region type is

The need for effect
polymorphism

Note that the effect and region variables must be
universally quantified to allow map application
in multiple contexts with cross contamination of
region and effect information.

Game of Life:
Tofte/Talpin completion

Note:
•  life not tail recursive!
•  result of nextgen must be in same region as argument

Region inference (Tofte/
Birkedal 2001)

  Inference for expressions:
  Build derivation template with uniquely occurring

region and effect (meta)variables
  Collect equational constraints between region

variables and containment contraints between effects
variables

  Normalize (eliminate) constraints by producing
substitution and making scoped region decisions

  Types of fixpoints (recursive functions):
  Employ Kleene-Mycroft iteration: Assume “most

polymorphic’’ type for recursive occurrences of
function, compute type according to process above.

  Does that terminate?

Region inference: Example

Assume that the recursive occurrence of m has type

Musings
  Tofte/Birkedal’s inference is not known to

produce a principal completion for input programs
(under suitable definition of subsumption for
polymorphic types).

  Tofte/Talpin’s region system (of which RTL is a
variant) seeks to be ‘purely’ equational, but does
generate effect subtype constraints.

  Yet it does not have any subtype qualifications in
its polymorphic types (which are usually required
when combining parametric polymorphism and
subtyping for principality)

Extensions to Tofte/Talpin
region inference
  Birkedal-Tofte-Vejlstrup: Region resetting in

ML Kit
  Aiken-Faehndrich-Levin: Reducing lag and

drag by moving allocation and deallocation
sites closer to first, resp. last region access

  Walker-Crary-Morrisett, Walker-Watkins,
Henglein-Makholm-Niss: Typing calculi for
decoupled allocation and deallocation
operations

Extensions to Tofte/Talpin
region inference
  Cyclone (Grossman et al., Fluet-Morrisett):

region lifetime subtyping
  Vault (Faehndrich-DeLine): safe transitions

between linear and nonlinear usage
  Boyapati-Salcianu-Beebee-Rinard: Ownership

types and regions
  Christiansen-Velschow, Chin-Craciun-Qin-

Rinard: region inference for OO languages
  Makholm-Sagonas: region inference for logic

programs

Contributions
  Region-based memory management as

nonstandard interpretation of type-based
value flow analysis

  Correctness = Partial correctness +
soundness
  Partial correctness (by partial simulation): depends

only instrumented semantics (w/o type system)
  Soundness (by progress and preserveation):

depends only on type system

  Very simple proofs!

Type-based analysis:
“The method”

  Instrumented typed semantics:
  additional constructs (annotations), with
  operational semantics and
  type system for annotated language

  TBA specifies solution space (completions): Set of all possible
derivations for given source program
  Correctness: partial correctness + soundness (or: proof by coherence of

completions, e.g. Henglein, “Dynamic Typing: Syntax and Proof Theory”,
SCP, 1994)

  Quality: Choice between completions, from trivial to principal, depending
on context (e.g., based on a subsumption theory for completions)

  Analysis = transformation: Source program  well-typed annotated
program. (The well-typed annotated program is the result of the
analysis.)

  Exploitation of analysis = (possibly nonstandard) implementation or
further processing of annotated program

Game of Life (Postscript):
ML Kit with Regions

Exercises

  Read “Effect types and region-based
memory management”, 3-3.3 (plus the
rest at your leisure). Skip the “Notes”
sections the first time around.

  Do the following exercises: 3.2.4-3.2.6,
3.3.2, 3.4.2, (3.2.11)

  STL is unsound. Is there a way of
restricting the language instead of
adding effects to ensure soundness?

