
Types for Units-of-Measure:
Theory and Practice

Types at Work, København, Danmark

Andrew Kennedy
Microsoft Research, Cambridge

NASA “Star Wars” experiment, 1983

23rd March 1983. Ronald Reagan
announces SDI (or “Star Wars”): ground-
based and space-based systems to
protect the US from attack by strategic
nuclear ballistic missiles.

http://upload.wikimedia.org/wikipedia/en/e/e5/C13571-8a.jpg

1985

Mirror on underside
of shuttle

SDI experiment:
The plan

Big mountain in Hawaii

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985

SDI experiment:
The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985

The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985

NASA Mars Climate Orbiter, 1999

Solution

• Check units at development time, by

– Static analysis, or

– Type checking

Not a new
idea!

Last
century...

...put into
practice at

last!

Refined types

• Conventional type systems for languages such as Java,
C#, ML and Haskell catch many common programming
errors
– Invoking a method that doesn’t exist
– Passing the wrong number of arguments
– Writing to a read-only field

• So-called refined type systems layer additional
information onto the underlying types
– Size-of-array, to catch out-of-bounds access
– Effect information, to limit scope of side effects
– Other simple invariants (e.g. balanced-ness of trees)
– Units-of-measure, to catch unit and dimension errors

Overview

• Lecture 1: Practice

– Gentle tour through units-of-measure in F#

– Using Visual Studio 2008, or from fsi

– Demos: physics, Xbox game

• Lectures 2 and 3: Theory

– The type system and type inference algorithm

– Semantics of units; link to classical dimensional
analysis

Units-of-measure design

 Minimally invasive
– Type inference, in the spirit of ML & Haskell

• Annotate literals with units, let inference do the rest

• But overloading must be resolved

 Familiar notation, as used by scientists and engineers

 No run-time cost: units are not carried at runtime

 Extensible: not just for floats!

No support for dimensions (classes of units, such as mass)

No automatic unit conversions (but programmer can define
them)

Feature Tour in
Visual Studio 2008

Summary (1)

Declaring derived units

Declaring base units

Constants with units

Types with units

Unit conversions

Dimensionless quantities

Interop

Summary (2)
Unit-polymorphic functions

Polymorphic zero

Polymorphic types

Application area 1: statistics

Arithmetic mean

Standard deviation

Input: list of numbers

Geometric mean

Unit-
polymorphic

types?

Application area 2: calculus

• Lots of higher-order functions (called “operators” by
mathematicians) e.g.

differentiate : (RR)(RR)

• These should have units! e.g.

differentiate : (RuRv)(RuRv/u)

Application area 2: calculus

Of course in practice, we use numerical methods:

Differentiation

Integration

Root-finding

Summary (3)
Unit-parameterized types

Polymorphic recursion in types

Overloaded static members

Polymorphic recursion in functions

Are units useful?
• We hope so!

– They really do catch unit errors (e.g. Standard deviation vs variance in
machine learning algorithms)

– They inform the programmer, and “correct” types help catch errors
e.g.

• Lots of “non-standard” applications
– Finance (units: USD/yr, etc.)

– Graphics (units: pixels, pt, etc.)

– Games (units: as in physics!)

– Search (units: hits/page, etc.)

Questions?

Types for Units-of-Measure:
Theory and Practice

Lecture 2: Types and Type Inference

Andrew Kennedy
Microsoft Research, Cambridge

Polymorphic type inference

• Type systems of SML, Caml, Haskell, F# are all based
on type inference for let polymorphism
– Old technology! A theory of type polymorphism in

programming, Robin Milner, 1978.

– Polymorphic types (type schemes) are introduced by let
bindings, lambda bindings are non-polymorphic

Polymorphic type inference, cont.

• Hundreds of papers have extended this system

1. To support polymorphism for ¸ e.g. MLF, HMF, FPH,
giving ML the expressiveness of System F

2. To add features such as GADTs, 9

3. To support polymorphism over other entities e.g. records
(“row polymorphism”) or effects

• Units-of-measure are an example of 3.

Units as types?

• Can’t we just code up units-of-measure as types?
E.g. Acceleration is just

• No! This doesn’t respect properties of units e.g.

Need commutativity to make units match

Need inverses and identity to make units match

Grammar for units

Unit expressions

Base units e.g. kg

Unit variables e.g. ‘u

No units (dimensionless)

Product of units

Inverse

Unit quotient

Integer powers
of units

Equations for units

Equivalence relation

Congruence

Abelian group axioms

Equational theories

• =U is an example of an equational theory

• Other examples:

– AC (just associativity and commutativity)

– AC1 (add identity, to get commutative monoids)

– ACI (add idempotence)

– BR (boolean rings)

• For units we have AG, the theory of Abelian groups

The case of the vanishing variable

• Write vars(u) for the set of variables syntactically
occurring in unit expression u e.g.

• Our theory (AG) is non-regular, meaning that

• This is the source of many challenges!
– For example, we have to be careful when saying “® not

free in ...”

Deciding equations

How to check if equation

is valid?

1. Put unit expressions u and v into normal form:

2. Check equality syntactically.

Non-zero exponents

Variables and base units
ordered alphabetically

Normal form example

• Unit expression:

• Normal form:

Solving equations

• Deciding equations gives us type checking.

• For type inference, we need to solve equations.

• Here, the compiler generates a fresh unit variable ®
for the units of y, then solves the equation

Multiple solutions

• In general, there may be many ways to solve e.g.

• This has (at least) three ground solutions

• But all solutions are subsumed by a non-ground,
`parametric solution’:

Equational unification

• Solving equations with respect to an equational theory E is
called equational unification.
– Given two terms t and u, find substitution S such that

S(t) =E S(u)

• Syntactic unification is the basis of ML type inference.
– principal types property stems from the fact that if two terms are

unifiable then there exists a single most general unifier that subsumes
all others

• Not all equational theories enjoy this property. Many theories
require multiple substitutions to express all solutions.

A good book:
“Term Rewriting and All That” by

Baader and Nipkow

AG unification

• For units, a unifier of two unit expressions u1 and u2 is a
substitution S on unit variables such that S(u1)=U S(u2)

• Fortunately, Abelian Group unification is
– unitary (single most general unifiers exist with respect to the

equational theory), and

– decidable (algorithm is a variation of Gaussian elimination)

• First, notice that

• So we can reduce the problem to unifying a unit expression
against 1.

Unification algorithm

Unification in action

®3 * ¯2 =U kg6

rewrite

apply

apply

Success!

apply

Correctness of Unification

• We can prove the following:

“is more general than”

Grammar for types

Type
expressions

Type variables

Unit-parameterized
floats

Function types

Equations for types

• Obvious extension from units, such that

Unification for types

Just ordinary unification with
unification for units plugged in!

Type schemes

• Formally, a type scheme is a type in which (some)
unit variables are quantified:

• A type scheme instantiates to a type by replacing its
quantified variables by unit expressions:

Type scheme instantiation, cont.

• We write

• Surprising example:

Type system

• Essentially the same as ML, with one new rule:

• This just says that typing respects “rules of units”

• Rule for variables just instantiates the type scheme
of the variable:

Type Inference Algorithm

• Can we just plug in our new unification algorithm
into usual ML inference algorithm?

• Not quite. We get soundness, but not completeness
– i.e. some legal programs are rejected.

– This is because just using “free unit variables” in the rule
for let is not sufficient.

– Can be fixed by “normalizing” the type environment
before generalizing unit variables. For details, see my
thesis.

Correctness of Inference Algorithm

• Suppose algorithm Infer(e) produces a type scheme for
expression e. We can prove the following:

Type Scheme Equivalence

• Two type schemes are equivalent if they instantiate to the same set of
types, up to the equational theory:

• For vanilla ML, this just amounts to renaming quantified type variables or
removing redundant quantifiers.

• For F# with units, there are many non-trivial equivalences. E.g.

Simplifying type schemes

• We can show that two type schemes are equivalent iff there is an
invertible substitution on the bound variables that maps between
them (this is a “change of basis”)

• Idea: compute such a substitution that puts a type scheme in some
kind of preferred “normal form” for printing. Desirable properties:
– No redundant bound or free variables (so number of variables = number

of “degrees of freedom”)

– Minimize size of exponents

– Use positive exponents if possible

– Unique up to renaming

• Such a form does exist, and corresponds to Hermite Normal Form
from algebra
– Pleasant side-effect: deterministic ordering on variables in type

Simplification in action

Technical summary

• Grammar for units

• Equational theory of units (AG) with

– decidable equality

– decidable and unitary unification

• Change of basis algorithm, used for

– type scheme simplification

– generalization (not discussed today)

• Main Result: principal types

Executive summary

• Units-of-measure types occupy a “sweet spot” in the
space of type systems

– Type system is easy to understand for novices (just high-
school “rules of units”)

– Types have a simple form (e.g. no constraints, bounds)

– Types don’t intrude (there is rarely any need for
annotation)

– Behind the scenes, inference is non-trivial but practical

Questions?

Types for Units-of-Measure:
Theory and Practice

Lecture 3: Semantics of Units

Andrew Kennedy
Microsoft Research, Cambridge

Type safety

• “Well-typed programs don’t go wrong” (Milner,
1978)

– They don’t dump core or throw MissingMethodException

– Formalized by adding a wrong value to the semantics (e.g.
“applying” an integer to a value evaluates to wrong) and
then showing that well-typed expressions don’t evaluate
to wrong

– These days usually formalized as syntactic type soundness:
• Preservation: if e:¿ and e reduces in some number of steps to e’,

then e’:¿, and

• Progress: if e:¿ then either e is a final value (constant, lambda, etc)
or e reduces to some e’ (i.e. it doesn’t “get stuck”)

Units going wrong?

• What “goes wrong” if a program contains a unit error?
– Nothing!

– Unless runtime values are instrumented with their units-of-measure.
But that would be cheating (runtime values don’t have units)!

– We need a different notion of “going wrong”

• In Nature, units do not go wrong! Instead, physical laws are
invariant under changes to the unit system.

• So in Programming, the real essence of unit correctness is the
invariance of program behaviour under change to units.

Units going right

let checkin(baggage:float<lb>, allowance:float<lb>)

= if baggage > allowance then printf “Bags exceed limit”

checkin(88.0<lb>, 44.0<lb>)

Metricate

let checkin(baggage:float<kg>, allowance:float<kg>)

= if baggage > allowance then printf “Bags exceed limit”

checkin(40.0<kg>, 20.0<kg>)

Same behaviour:
passenger is turned away!

Units going wrong

let checkin(baggage:float<lb>, allowance:float<cm>)

= if baggage > allowance then printf “Bags exceed limit”

checkin(88.0<lb>, 55.0<cm>)

Metricate

let checkin(baggage:float<kg>, allowance:float<cm>)

= if baggage > allowance then printf “Bags exceed limit”

checkin(40.0<lb>, 55.0<cm>)

Different behaviour!

Polymorphic units going wrong?

• Suppose we have a function

• What does it mean for this function to “go wrong”? We surely
know it when we see it:

• But what if it’s implemented by

foo : float<‟u> -> float<‟u^2>

FPGA human computer
analogue computer

Machine code

let foo (x:float<„u>) = x*x*x

http://upload.wikimedia.org/wikipedia/commons/d/d4/Brain_090407.jpg
http://upload.wikimedia.org/wikipedia/commons/7/7e/AKAT-1.JPG

Polymorphic units going right

• Again: the essence of unit correctness is invariance under
scaling. For

this amounts to the property

for any positive “scale factor” k.

• Suppose that we discovered that

Then we would know that foo’s type is “lying”!

Representation Independence

• Invariance under scaling is an example of representation
independence.
– We can change the data representation without changing the

behaviour of a program

– Applied to polymorphic functions, this is known as parametricity
(Reynolds, 1983)

• Example for ordinary polymorphism: if

then for any “change of representation” function f,

Parametricity for units

• First define a scaling environment Ã: a map from unit
variables to positive scale factors. Extend to unit expressions:

• Now define a binary “logical” relation over values, indexed by
types and type schemes:

• Now we can prove the “fundamental theorem”:

Scaling theorems for free

Example 1. If

f : 8®¯:float<®> -> float<¯> -> float<® * ¯^-1>

8k1; k2 > 0; f (k1 * x) (k2 * y) = (k1=k2) * f x y

then

• First consequence of parametricity: given just the
type of a function, we can obtain “theorems for free”

Scaling theorems for free

then

diff : 8®¯:float<®> -> (float<®> -> float<¯>)

-> (float<®> -> float<¯ * ®^-1>)

8k1; k2 > 0;diff h f x =
k2

k1
¤ diff

µ
h

k1

¶µ
¸x:

f(x ¤ k1)

k2

¶µ
x

k1

¶

Example 2. If

Zero

• Why is zero polymorphic in its units? Answer:
because it is invariant under scaling:

• This holds for no other values, so they cannot be
polymorphic.

Definability

• Parametricity can also be used to show that some types are
uninhabited, or at least contain only “boring” functions.

• Example for ordinary polymorphism: no functions have type

• For units, we can show that given only basic arithmetic (+, -, *,
/, <) there are no interesting functions with type

• Exercise: intuitively, why is this? Hint: try using Newton’s
method to compute square root, with polymorphic units.

Type isomorphisms

• We write
if the types are isomorphic, meaning

• Examples:

Need parametricity
to prove these two!

A surprising isomorphism

• Assuming positive values only:

Proof.

A surprising isomorphism

• Assuming positive values only:

Informally, consider what functions have type

• They must be equivalent to

Another surprising isomorphism

• Assuming positive values only:

Exercise: prove it!

Dimensional analysis

• Old idea (Buckingham): given some physical system with known
variables but unknown equations, use the dimensions of the
variables to determine the form of the equations. Example: a
pendulum.

θ

m

l

Worked example

• Pendulum has five variables:
mass m M
length l L
gravity g LT-2

angle θ none
time period t T

• Assume some relation f(m, l, g, θ, t) = 0

• Then by scaling invariance f(Mm, Ll, LT-2g, θ, Tt) = 0 for any "scale
factors" M,L,T

• Let M=1/m, L=1/l, T=1/t, so f(1,1,t2g/l, θ, 1) = 0

• Assuming a functional relationship, we obtain

Think of M L T as
(arbitrary) units for

Mass Length and Time

Dimensional analysis, formally

Pi Theorem
Any dimensionally-invariant relation

f(x1,…,xn)=0

for dimensioned variables x1,…,xn whose dimension exponents are
given by an m by n matrix A is equivalent to some relation

g(P1,…,Pn-r)=0

where r is the rank of A and P1,…,Pn-r are dimensionless products
of powers of x1,…,xn.

Proof: Birkhoff.

Primitive isomorphisms
• We can classify isomorphisms:

• These can be composed to build isomorphisms such as

Pi Theorem, for first-order types

• Suppose

Let A be m£n matrix of exponents of variables in u1,...,un. Let
B be m-vector of exponents in u0. If AX=B is solvable, then

where r is the rank of A.

• Proof. Iteratively apply primitive isomorphisms C1-C3 and R1-R3 that
correspond to column and row operations on matrix A, producing the
Smith Normal Form of A. Then apply r instances of isomorphism D and
we’re done!

Summary

• The semantics of units is all about “invariance under
scaling”
– Program behaviour is invariant under changes to base

units

– Polymorphic functions have “scaling properties” derived
from their types

• Nice connection to classical results from dimensional
analysis

• This “extensional” approach to safety can be applied
in other domains too e.g. “high-level types for low-
level programs”, effect systems

