Types for Units-of-Measure:
Theory and Practice
Types at Work, Kebenhavn, Danmark

Andrew Kennedy ' X
Microsoft Research, Cambridge . |
\
N
R

NASA “Star Wars” experiment, 1983

234 March 1983. Ronald Reagan
announces SDI (or “Star Wars”): ground-
based and space-based systems to
protect the US from attack by strategic
nuclear ballistic missiles.

http://upload.wikimedia.org/wikipedia/en/e/e5/C13571-8a.jpg

Mirror on underside

i SDI experiment:

The plan

Big mountain in Hawaii

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

SDI experiment:
The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol i0 no 3/ Jul 1985 page 10

Attention All Units, Especially Miles and Feet!

Much to the surprise of Mission Control, the space shuttle Discovery flew upside-down over Maui on
19 June 1985 during an attempted test of a Star-Wars-type laser-beam missile defense experiment.
The astronauts reported secing the bright-blue low-power laser beam emanating from the top of Mona
Kea, but the experiment failed because the shuttle's reflecting mirror was oriented upward! A
statement issued by NASA said that the shuttle was to be repositioned so that the mirror was
pointing (downward) at a spot 10,023 feet above sea level on Mona Kea; that number was supplied to
the crew in units of feet, and was correctly fed into the onboard guidance system -- which
unfortunately was expecting units in nautical miles, not feet. Thus the mirror wound up being
pointed (upward) to a spot 10,023 nautical miles above sea level. The San Francisco Chronicle article
noted that ‘‘the laser experiment was designed to see if a low-energy laser could be used to track a
high-speed target about 200 miles above the earth. By its failure yesterday, NASA unwittingly proved
what the Air Force already knew -- that the laser would work only on a ‘cooperative target’ -- and is
not likely to be useful as a tracking device for enemy missiles.” [This statement appeared in the S.F.
Chronicle on 20 June, excerpted from the L.A. Times; the NY Times article on that date provided
some controversy on the interpretation of the significance of the problem.| The experiment was then
repeated successfully on 21 June (using nautical miles). The important point is not whether this
experiment proves or disproves the viability of Star Wars, but rather that here is just one more
example of an unanticipated problem in a human-computer interface that had not been detected prior
to its first attempted actual use,

MAIN PAGE
WORLD
U.5.

LOCAL
POLITICS
WEATHER
BUSINESS
SPORTS
TECHNOLOGY
[sPAcCE -]
HEALTH
ENTERTAINMENT
BOOKS

TRAVEL
EOOD
ARTS & STYLE

HATURE

IN-DEPTH
ANALY 5|5
myCHN

Headline Mews brief
DEMS OUZ
daily almanac

MULTIMED|A:

video

video archive

audio

multimedia showease

MoTe Sefvices

E-MAIL:
Subsoibe to one of our
news e-mail lists.
Enter your address:
1

NASA Mars Climate Orbiter,

[in-depthspecials[€

Metric mishap caused loss of

NASA orbiter

September 30, 1999
Web posted at: 4:21 p.m. EDT (2021 GMT)

In this story:

Metric system used by NASA for many
years

Error points to nation's conversion lag

=T

RELATED STORIES, SITES ¥ - :

! Lo T =
HNASA's Climate Orbite
September 23, 1999

By Robin Lloyd
CNN Interactive Senior Writer

(CNN) -- NASA lost a 5125 million Mars orhiter because a Lockheed
Martin engineering team used English units of measurement while the
agency's team used the more conventional metric system for a key
spacecraft operation, according to a review finding released Thursday.

The units mismatch prevented navigation information from transferring
between the Mars Climate Orbiter spacecraft team in at Lockheed Martin in
Denver and the flight team at NASA's Jet Propulsion Laboratory in
Pasadena, Calfornia.

1999

Solution

* Check units at development time, by
— Static analysis, or
— Type checking

Ty
app
ter

Annotation-less Unit Type Inference for C

Tudor Antoniuf
Philip Guo and Stephen McCamant

Final Project, 6.883: Program Analysis

December 14, 2005

Validating the Unit Correctness of Spreadsheet Programs’

unk Microsystems

Paul A. Steckler*
Northrop Grumman IT/FNMOC

Shriram Krishn:
Brown Unive

Erich Neuwirth

Matthias Felleisen

Chapter 18

Rule-based Analysis of Dimensional Safety

Ab

Feng Chen, Grigore Rogu, Ram Prasad Venkatesan sclientiﬁc companies, el
v include e increasingly I

Department of Computer Science Irams are ums. The creat

University of Tllinois at Urbana - Champaign, USA

{fengchen, grosu, rpvenkat }@uiuc. edu

Abstract. Dimensi
analysis concerned wi

st track the,

unit

ciples of units of meg

Inférence d’unités physiques en ML

routinely dimensional

can hide significant
to find otherwise. D!
tional programming
eral design principles
prototypes, implemer
static checkers. Our
code which are prope:

Jean Goubault"”

1 Bull coordination recherche
rue Jean Jaurés

78 340 Les Clayes sous Bots, France
Jean.Goubault@frcl.ball.
DMI-LIENS Ecole Normale Supéry

programming languag
types consists of war
safety policy. These
Maude, using more 2
non-trivial applicatio

1 Introduction
Checking software for me:
analysis, is an old topic in| Résumé : Nous décrivons une extension du syste)
typage plus fin des quantités numériques, par
ique (masse, 1 , etc.). Le systéme est
effectue la vérification et I'inférence automatique des
physiques (kg, m, etc.) sont alors des échelles le long del
antomatiquement lea natructiona de converalon enty

mains, such as physics, m| un
involves units of measuremj ph
programming languages.

units can be quite compli
putations, for example ad
domain-specific errors whi

Nous en décrivons lea

Adding Apples and Orang

Martin Erwig and Margaret Burnett

Oregon State University
Department of Computer Science
Corvallis, OR 97331, USA
[erwig|burnett]l@cs.orst.edu

Edit this pad

ensio

Abstract. We define a unit system for end-user spreadsheets tha
based on the concrete notion of units instead of the abstract concep

Categories: Mathematics | Type-level

Automatic Dimensional Inference

Mitchell Wand* Patrick O’Keefe
College of Computer Science
Northeastern University
360 Huntington Avenue, 161CN
Boston, MA 02115, USA

wand@corwin.ccs.northeastern.edu

ICAD, Inc.
1000 Massachusetts Avenue
Cambridge, MA 02139

1. While there have been a number of proposals to integrate dimensional
alysis into existing compilers [1, 7, 8, 9], it appears that no one has made
observation that dimensional analysis fits neatly into the pattern
e type inference [4, 5, 6]. In this paper we show how to add
g the simply-typed lamhda calculus, and we show that every

jn-preserving term has a

principal type. The principal type

ensional
ptatically checked physical
dimensions for Haskell.
oads Wiki Issues

Not logged in
Login | Help

E | Related changes

nalized ndmbers

gta types for performing arithmetic with physical

e physical dimensions of the quantities/units
of operations is verified by the type

gang of numerical values as quantities
eMits. The library is designed to, as far as
of unit usage.

types. Units are derived from header information given by spreadshe
The unit system contains concepts, such as dependent units, mulf
units, and unit generalization, that allow the classification of spr
sheet contents on a more fine-grained level than types do. Also, bec

| have created a simple toy example using functional d
types to do compile-time unit analysis error catching a
only two "base dimensions” time, and length, and very
but it is usable.

The Units of Measure Library

Dimensions and Units

DimType
DimRef
TypeRef DimRef
TypeRef - DimRef
TypeRef | DimRef
TypeRef per DimRef
TypeRef UnitRef
TypeRef - UnitRef
TypeRef | UnitRef
TypeRef per UnitRef
TypeRef in DimRef
StaticArg
Unity
dimensionless
StaticArg - StaticArg
StaticArg StaticArg
© 4rg / StaticArg
aticArg
Arg © StaticArg
Arg per StaticArg
eOp StaticArg
Arg DUPostOp

communication with the end user happens only in terms of objects
are contained in the spreadsheet, our system does not require end users

to learn new abstract concepts of type systems.

Keywords: First-Order Functional Language,
Checking, Unit, End-User Programming

Spreadsheet, Type

Donate

Provides a C++ type-safe mechanism to deal with various units of measure. It prevents many units-related run-time
errors (such as mistakenly mixing feet and meters) by catching them at compile time. The library includes scalar, 2D,
and 3D vectors.

Programming Languages
and
Dimensions

Andrew John Kennedy
=t. Catharine’s College

A dissertation submitted to the University of Cambridge
towards the degree of Doetor of Philosophy

November 1005

msdn

Microsoft F# Developer Center

Library Cownloads Support Community

MSDN * Developer Centres * Microsoft F# Developer Center ¥ Home

F#

F# is a functional programming language for the .NET F
libraries, interoperability, and object model of .NET.

ework. It combines the succinct, expressive, and compositional st

Getting Started with F#
Download the F# CTP

...put Into
Get the newest release of F&, .
including the compiler, tools,
Visual Studio 2008 integratig p ra Ct I Ce at
to get started developing
ENa

Pon Syme describes the key new

Learn F#
Get resources for learning F#,
including articles, videos, and books.
Three sample chapters of the Expert
F# book are also available for
preview.

o the new world of F#£.

Maore...

The F# Language Specification

Get all the nitty-gritty details of the .

F# language from the draft F# Featured Videos
language specification. Provides a in-

depth description of the F#

language's syntax and semantics.

Also available in PDF.

Refined types

e Conventional type systems for languages such as Java,
C#, ML and Haskell catch many common programming
errors

— Invoking a method that doesn’t exist
— Passing the wrong number of arguments
— Writing to a read-only field
» So-called refined type systems layer additional
information onto the underlying types
— Size-of-array, to catch out-of-bounds access
— Effect information, to limit scope of side effects
— Other simple invariants (e.g. balanced-ness of trees)
— Units-of-measure, to catch unit and dimension errors

Overview

 Lecture 1: Practice

— Gentle tour through units-of-measure in F#
— Using Visual Studio 2008, or from fsi
— Demos: physics, Xbox game

* Lectures 2 and 3: Theory

— The type system and type inference algorithm

— Semantics of units; link to classical dimensional
analysis

Units-of-measure design

v Minimally invasive

— Type inference, in the spirit of ML & Haskell
* Annotate literals with units, let inference do the rest

* But overloading must be resolved
v" Familiar notation, as used by scientists and engineers
v No run-time cost: units are not carried at runtime
v" Extensible: not just for floats!
X No support for dimensions (classes of units, such as mass)

X No automatic unit conversions (but programmer can define
them)

Feature Tour In
Visual Studio 2008

Summary (1)

Declaring base units

[<Measure>] type kg

Declaring derived units
[<Measure>] type N = kg m/s"2

Constants with units

let gravity = 9.808<m/=3"2>

Types with units

let newtonsLaw (m:float<kg>) (a:float<m/s"2>) : float<N> = m*a

Unit conversions

let metresToFeet (l:float<m>) = 1 * 3.28084<ft/m>

Interop
let t = 0.001<s> * float stopwatch.ElapsedMilliseconds
Dimensionless quantities

let calcAngle (arc:float<m>) (radius:float<m>) : float = arc/radius

Summary (2)

Unit-polymorphic functions

let sgr (x:float< >) = x*x

Polymorphic types

let reciprocal : float<'u>» -> float<'u”-1> = fun x -> 1.0/x

Polymorphic zero

let sumSquares xs = List.fold (fun acc x -> sqr x + acc) 0.0< > xs

Application area 1: statistics

Input: list of numbers [a1;...;ay]
1 L
Arithmetic mean = — E a; St
n <= polymorphic
c0@® types?
1 n
- 2 2
Standard deviation ¢* = - E 1(a?; — 1)
—

1
n 7
Geometric mean g = (H ai)

Application area 2: calculus

e Lots of higher-order functions (called “operators” by
mathematicians) e.g.

differentiate : (R—>R)—>(R—R)

* These should have units! e.g.

differentiate : (R,—>R)—>(R,—R, /u)

Application area 2: calculus

Of course in practice, we use numerical methods:

Differentiation

fle+h)— f(x—h)

f'(@) ~ 5
Integration
h b—a
/f ~ 5 (fla)+2f(a+h)+--+2f(b=h)+ (b)), h=——rc-
Root-finding

f(@n)

Lp+1 — Ln — f’(ﬂ?)
n

Summary (3)

Unit-parameterized types

type complex< [<Measure>] 'u> = { re:float<'u>; im:float<'u> }

Overloaded static members

type vectorZ< [<Measure>] 'u> = { x:float<'u>; y:float<'u> } with
static member (+) (a:vectorZ<'u>, b) = { x = a.xth.x; v = a.yth.y }

Polymorphic recursion in types

type derivs< [<Measure>] 'u, [<Measure>] 'v> =
| Nil
| Cons of (float<'u>» -> float<'v>) * derivs<'u, 'v/'u>

Polymorphic recursion in functions

'u, [<Measure>] 'v>

let rec makeDerivs< [<Measure>]
(n:1int)
(h:float<'u>)
(f:float<'u> -> float<'v>) : derivs<'u, 'v> =

1f n=0 then Nil else Cons(f, makeDerivs (n-1) h (diff h £))

Are units useful?

We hope so!

— They really do catch unit errors (e.g. Standard deviation vs variance in
machine learning algorithms)

— They inform the programmer, and “correct” types help catch errors
e.g.

let doublesgr x = sgr X + X

‘Val doublesqr : float -> float ‘

let doublesgr x = sgr X + sr X

val doublesqr : float<'u> -> float<'u » 2>

Lots of “non-standard” applications
— Finance (units: USD/yr, etc.)

— Graphics (units: pixels, pt, etc.)

— Games (units: as in physics!)

— Search (units: hits/page, etc.)

Questions?

Types for Units-of-Measure:
Theory and Practice
Lecture 2: Types and Type Inference

Andrew Kennedy
Microsoft Research, Cambridge

T

r TSI)
—

Polymorphic type inference

* Type systems of SML, Caml, Haskell, F# are all based
on type inference for let polymorphism

— Old technology! A theory of type polymorphism in
programming, Robin Milner, 1978.

— Polymorphic types (type schemes) are introduced by let
bindings, lambda bindings are non-polymorphic

let pair =

let id fun v -> yv in (id 5, id true)
val id: ('a -> "a)
let pair =

let applyFun £ = (f 5, £ true) in applyFun (fun y -> vy)
This expression has type bool but is here used with type int

Polymorphic type inference, cont.

* Hundreds of papers have extended this system

1. To support polymorphism for A e.g. ML", HMF, FPH,
giving ML the expressiveness of System F

To add features such as GADTSs,

To support polymorphism over other entities e.g. records
(“row polymorphism”) or effects

* Units-of-measure are an example of 3.

Units as types?

 Can’t we just code up units-of-measure as types?
E.g. Acceleration is just

acc : float<UProd<m,UInv<UProd<s, s>>>>

* No! This doesn’t respect properties of units e.g.

let totalAcc = 2.0<m s*-2> 4+ 3.0<3"-2 m>

Need commutativity to make units match

let distance = 2.0<m> + 3.0<m s"-1> * 4.,0«<5>

Need inverses and identity to make units match

Grammar for units

Base units e.g. kg No units (dimensionless)

==
u,v,wa=b|a|l|lu*xv|u-1

Unit variables e.g. ‘u Product of units

u*u~(n—1) it n > 0,
Integer powers un = 1 if n =0,
of units u-1*xu~(n+1) ifn<0.

Equations for units

Equivalence relation

u=y?v Uu=gyv UV=pyw
(refl) (sym) (trans)
U =g u V= u U =y w
Congruence
!/ /
U =77 V uUu=gygv uUu =—=gygv
v (congl) Y (cong2)
u -1 =g v--1 u*xu =g ov*o
Abelian group axioms
(id) (assoc)
ux*x1l=yu (u*v)*w=yu*(v*w)
(comm) (inv)

U*vV =y v*u u*xu"-1=¢y1

Equational theories

=, is an example of an equational theory

Other examples:

— AC (just associativity and commutativity)

— AC1 (add identity, to get commutative monoids)
— ACI (add idempotence)

— BR (boolean rings)

For units we have AG, the theory of Abelian groups

The case of the vanishing variable

* Write vars(u) for the set of variables syntactically
occurring in unit expression u e.g.

vars((a * () * (kg * 8°-1)) = {a, B}
e QOur theory (AG) is non-reqgular, meaning that
u =y v 7 vars(u) = vars(v)

* This is the source of many challenges!

— For example, we have to be careful when saying “a not
freein..”

Deciding equations

How to check if equation
U =y v

is valid?

1. Put unit expressions u and v into normal form:

Non-zero exponents

(I1$1 *°°°*Oém$m*b1y1*“-*bnyn

Variables and base units
ordered alphabetically

2. Check equality syntactically.

Normal form example

* Unit expression:
(a* B) * (kg * 57-1) *)
* Normal form:

o * kg

Solving equations

* Deciding equations gives us type checking.
* For type inference, we need to solve equations.

> let area = 20.0<m"2>;;
val area : float<m =~ 2> = 20.0
> let £ (y:float< >) = area + y*y;;

val £ : float<m> -> float<m ~ 2>

* Here, the compiler generates a fresh unit variable o
for the units of y, then solves the equation

a2 =y m-2

Multiple solutions

* |In general, there may be many ways to solve e.g.

a* =y m2
* This has (at least) three ground solutions
{a:=m,[F:=n} {a:=wm2,0:=1} {a:=1,0F:=n"2}

e But all solutions are subsumed by a non-ground,
‘parametric solution’:

{a:= [G~-1 *m~2}

Equational unification

Solving equations with respect to an equational theory E is
called equational unification.
— Given two terms t and u, find substitution S such that
S(t) =¢ S(u)
Syntactic unification is the basis of ML type inference.

— principal types property stems from the fact that if two terms are
unifiable then there exists a single most general unifier that subsumes
all others

Not all equational theories enjoy this property. Many theories
require multiple substitutions to express all solutions.

A good book:

“Term Rewriting and All That” by
Baader and Nipkow

AG unification

For units, a unifier of two unit expressions u, and u, is a
substitution S on unit variables such that S(u,)=, S(u,)

Fortunately, Abelian Group unification is

— unitary (single most general unifiers exist with respect to the
equational theory), and

— decidable (algorithm is a variation of Gaussian elimination)

First, notice that

u =gy v if and only if u * v°-1 =¢ 1

So we can reduce the problem to unifying a unit expression
against 1.

Unification algorithm

Unify(u,v) = UnifyOne(u * v--1)

UnifyOne(u) =
let u =aj* * - - xafm *x by * .- x b¥n where |x1| < |z, -, |Tm|
in

if m =0 and n = 0 then id
if m =0 and n # 0 then fail

if m =1 and x; | y; for all ¢ then {a; — bl_yl/:131 k -k bfr_ny”/m}
if m = 1 otherwise then fail

else S5 0 S7 where

2—L992/331J * —|zm /1] * bl—Lyl/iﬂlJ oo ok b;Lyn/xlj}

S1=H{a1 — aj *« ek Qup

So = UnifyOne(Sy1(u))

Unification in action

J apy{B:=0*a'xkg’}
Qo * /82 = 1

J apply fai=axp™=}

=1 1
l apply {a := 1}
1=y 1

Success!

Correctness of Unification

* We can prove the following:

(Soundness) If Unify(u,v) =S then S(u) = S(v).
(Completeness) If S(u) =y S(v) then Unify(u,v) <y S.

“is more general than”

Grammar for types

Type variables Function types

T u=qa | float<u> |7 -> T
Type
expressions _)
Unit-parameterized

floats

Equations for types

* Obvious extension from units, such that

float<u> =y float<v> iff u =y v

Unification for types

TUnify(a,) = id
: : fail ifaoin 7
TUnify(o, 7) = TUnify(t,) = { {a:=71} otherwise.
TUnify(float<u>, float<v>) = Unify(u,v)
TUnify(my => 10,73 =>14) = So05]

where S| = TUnify(ry,73)
and So = TUnify(S1(72), 51(74))

Just ordinary unification with

unification for units plugged in!

Type schemes

* Formally, a type scheme is a type in which (some)
unit variables are quantified:

ou=Vai,...,0,.T

* Atype scheme instantiates to a type by replacing its
qguantified variables by unit expressions:

Vai,...,an,.7 27 if 7 ={ay :=uq,...,q, = u, 7 for some uq,...,u,
? Y]) ? ? ?

Type scheme instantiation, cont.

* We write

o <y 7if o <y 7 and 7' = T for some 7'.

* Surprising example:

Va.float<a * kg> -> float<a * kg> <y float<1> -> float<1>

Type system

* Essentially the same as ML, with one new rule:

VilkFe:m
VilkFe:m

T1 =U T2

* This just says that typing respects “rules of units”

* Rule for variables just instantiates the type scheme
of the variable:

o=T

Villleiobax: 1T

Type Inference Algorithm

Can we just plug in our new unification algorithm
into usual ML inference algorithm?

Not quite. We get soundness, but not completeness
—i.e. some legal programs are rejected.
— This is because just using “free unit variables” in the rule
for let is not sufficient.

— Can be fixed by “normalizing” the type environment
before generalizing unit variables. For details, see my

thesis.

Correctness of Inference Algorithm

* Suppose algorithm Infer(e) produces a type scheme for
expression e. We can prove the following:

(Soundness) If Infer(e) <y 7 then ke : 1
(Completeness) If - e : 7 then Infer(e) <y 7.

Type Scheme Equivalence

Two type schemes are equivalent if they instantiate to the same set of
types, up to the equational theory:

o1 2y oy iff (V101 Sy 7 09 <y T)
For vanilla ML, this just amounts to renaming quantified type variables or
removing redundant quantifiers.

For F# with units, there are many non-trivial equivalences. E.g.

/ :Vaf.float<a> — float<(3> — float<a * §--1>

: VafBv.float<y * a> — float<(3> — float<y *x o * 3°-1>
: VafB.float<a"-1> — float<(3~-1> — float<a~-1 * 3>

: Vaf.float<a * 3> — float<a> — float<[3>

: Vaf.float<a> — float<(3~-1> — float<a * (3>

: Vaf.float<y * a> — float<y * (3> — float<a * (°-1>

T~ T T T T

Simplifying type schemes

We can show that two type schemes are equivalent iff there is an
invertible substitution on the bound variables that maps between
them (this is a “change of basis”)

Idea: compute such a substitution that puts a type scheme in some
kind of preferred “normal form” for printing. Desirable properties:

— No redundant bound or free variables (so number of variables = number
of “degrees of freedom”)

— Minimize size of exponents

— Use positive exponents if possible

— Unique up to renaming
Such a form does exist, and corresponds to Hermite Normal Form
from algebra

— Pleasant side-effect: deterministic ordering on variables in type

Simplification in action

VafB.float<y * a> — float<y * 3°-1> — float<a * (3>

J{a=axy-1}
Vaf.float<a> — float<y * §°-1> — float<y -1 * a * 3>
I {5:=56-1)
Vaf.float<a> — float<y * 3> — float<y -1 * a * 3~-1>
| (8=8%7"-1}

VafB.float<a> — float<(> — float<a * ~-1>

Technical summary

Grammar for units

Equational theory of units (AG) with
— decidable equality
— decidable and unitary unification

Change of basis algorithm, used for
— type scheme simplification
— generalization (not discussed today)

Main Result: principal types

Executive summary

* Units-of-measure types occupy a “sweet spot” in the
space of type systems

— Type system is easy to understand for novices (just high-
school “rules of units”)

— Types have a simple form (e.g. no constraints, bounds)

— Types don’t intrude (there is rarely any need for
annotation)

— Behind the scenes, inference is non-trivial but practical

Questions?

Types for Units-of-Measure:
Theory and Practice
Lecture 3: Semantics of Units

Andrew Kennedy
Microsoft Research, Cambridge

T

r TSI)
—

Type safety

* “Well-typed programs don’t go wrong” (Milner,
1978)

— They don’t dump core or throw MissingMethodException

— Formalized by adding a wrong value to the semantics (e.g.
“applying” an integer to a value evaluates to wrong) and
then showing that well-typed expressions don’t evaluate
to wrong

— These days usually formalized as syntactic type soundness:

* Preservation: if e:T and e reduces in some number of steps to €/,
then e’:7, and

* Progress: if e:Tthen either e is a final value (constant, lambda, etc)
or e reduces to some €’ (i.e. it doesn’t “get stuck”)

Units going wrong?

What “goes wrong” if a program contains a unit error?
— Nothing!

— Unless runtime values are instrumented with their units-of-measure.
But that would be cheating (runtime values don’t have units)!

— We need a different notion of “going wrong”

In Nature, units do not go wrong! Instead, physical laws are
invariant under changes to the unit system.

So in Programming, the real essence of unit correctness is the
invariance of program behaviour under change to units.

Units going right

let checkin(baggage:float<lb>, allowance:float<lb>)
= if baggage > allowance then printf "Bags exceed limit’

checkin(88.0<1b>, 44.0<1b>)

Metricate

let checkin(baggage:float<kg>, allowance:float<kg>)
= if baggage > allowance then printf "Bags exceed limit’

Checkin(40.0<kg>, 20.0<kg>)
Same behaviour:

passenger is turned away!

Units going wrong

let checkin(baggage:float<lb>, allowance:float<cm>)
= if baggage > allowance then printf "Bags exceed limit’

checkin(88.0<1b>, 55.0<cm>)

Metricate

let checkin(baggage:float<kg>, allowance:float<cm>)
= if baggage > allowance then printf "Bags exceed limit’

checkin(40.0<1b>, 55.0<cm>)
Different behaviour!

Polymorphic units going wrong?

Suppose we have a function

foo : float<u> -> float<u"2>

What does it mean for this function to “go wrong”? We surely
know it when we see it:

let foo (x:float<'u>) = x*x*x

But what if it’s implemented by

frmual
fmul
fld
fxch
fmulp
fsub

Machine code

st(l),st
st(l),st

DWORD PTR [esp]
st (1)

st(2),5t

st,st (1)

human computer
analogue computer

http://upload.wikimedia.org/wikipedia/commons/d/d4/Brain_090407.jpg
http://upload.wikimedia.org/wikipedia/commons/7/7e/AKAT-1.JPG

Polymorphic units going right

* Again: the essence of unit correctness is invariance under

scaling. For
foo : Va.float<a> -> float<a?>

this amounts to the property
Vz,foo(k *x x) = k* * foo(x)

for any positive “scale factor” k.
* Suppose that we discovered that

foo(2) =8 foo(4) = 64

Then we would know that foo’s type is “lying”!

Representation Independence

Invariance under scaling is an example of representation
independence.

— We can change the data representation without changing the
behaviour of a program

— Applied to polymorphic functions, this is known as parametricity
(Reynolds, 1983)

Example for ordinary polymorphism: if

bar : Va.ao — a X «

then for any “change of representation” function f,

vz, bar(f(z)) = (f, f)(bar(z))

Parametricity for units

First define a scaling environment : a map from unit
variables to positive scale factors. Extend to unit expressions:

(1) = 1
b(uxv) = d(u)-¥(v)
h(um-1) = 1/9(u)

Now define a binary “logical” relation over values, indexed by
types and type schemes:

L Nfloat<u> Yy g Y = w(u) * T

f Nfﬂg’bl—>7'2 g ¢> vxyﬁx Ni"bl y :> f(x) N/;'DQ g(y)
T ~var Y A Vk, R Yy

Now we can prove the “fundamental theorem”:

Fa:0 = a~gsa

Scaling theorems for free

* First consequence of parametricity: given just the
type of a function, we can obtain “theorems for free”

Example 1. If

f : VaB.float<a> -> float<3> —> float<a * 5~-1>
then

Vkl,kg >O,f (kl *CB) (kQ *y) — (kl/kg) * fZCy

Scaling theorems for free

Example 2. If

diff : VafB.float<a> -> (float<a> -> float<(>)
-> (float<a> -> float<(* a~-1>)

then

Vki,ko > 0,diff h f x = @*diff E)\mf(aj*kl) ﬁ
kl kl kg

ero

* Why is zero polymorphic in its units? Answer:
because it is invariant under scaling:

Vk,k*0=20

* This holds for no other values, so they cannot be
polymorphic.

Definability

Parametricity can also be used to show that some types are
uninhabited, or at least contain only “boring” functions.

Example for ordinary polymorphism: no functions have type
Yafb.a => (3

For units, we can show that given only basic arithmetic (+, -, *,
/, <) there are no interesting functions with type

Voz.float<a2> -> float<a>

Exercise: intuitively, why is this? Hint: try using Newton’s
method to compute square root, with polymorphic units.

Type isomorphisms

* Wewrite nn=n
if the types are isomorphic, meaning

34t :7 — 79,7 : 79 — 71 such that joi=1d and 105 = id

* Examples:

int * bool = bool * int

int * bool —> unit * int = bool * int -> int

int ¥ Va.(a => int) -> int

int * bool = Va.(int -> bool -> a) -> « Need parametricity
to prove these two!

A surprising isomorphism

* Assuming positive values only:

Va.float<a> -> float<a> = float<1>
Proof.

i: (Va.float<a> -> float<a>) — float<1> = A\f.f(1)
j : float<1> — (Va.float<a> -> float<a>) = Az. \y.y * x

107 701

= A\z.i(j(z)) (composition) = Af.j(i(f)) (composition)

= Az.i(Ay.y * z) (applying j) = Af.3(f(1.0)) (applying)

= A\z.1.0 x x (applying 7) = Af Ay.y * f(1.0) (applying 7)

= \x.x (arithmetic) = A Ay.fy (scaling invariance)
(

= A\f.f eta)

A surprising isomorphism

* Assuming positive values only:

Va.float<a> -> float<a> = float<1>

Informally, consider what functions have type

Va.float<a> -> float<a>

* They must be equivalent to

M.k * x for some k : float<1>

Another surprising isomorphism

* Assuming positive values only:

Va.float<a> -> float<a> -> float<a> = float<1> -> float<1>

Exercise: prove it!

Dimensional analysis

 Oldidea (Buckingham): given some physical system with known
variables but unknown equations, use the dimensions of the
variables to determine the form of the equations. Example: a

pendulum.
[
= \/;(b(ﬂ) for some ¢

period t

Worked example

Pendulum has five variables:

Think of M LT as

mass m M (arbitrary) units for
length | L Mass Length and Time
gravity g LT-2

angle 0 none

time period t T

Assume some relation f(m, [, g, 0, t) = 0

Then by scaling invariance f(Mm, LI, LT?g, 6, Tt) = 0 for any "scale
factors" M,L,T

Let M=1/m, L=1/I, T=1/t, so f(1,1,t?¢/[, 6, 1) = 0
Assuming a functional relationship, we obtain

t = \/gqb(ﬁ) for some ¢

Dimensional analysis, formally

Pi Theorem
Any dimensionally-invariant relation

f(xy,...,X,)=0

for dimensioned variables X, ...,X, whose dimension exponents are
given by an m by n matrix A is equivalent to some relation

g(P,,....P,,)=0

where r is the rank of A and P, ...,P, . are dimensionless products
of powers of Xy, ..., X,

Proof: Birkhoff.

Primitive isomorphisms

* We can classify isomorphisms:

Tl_>'.'_>Ti_>".Tj_)"'_>Tn_)T T1_>"'_>Tj_>"'7_’i_>"'_>7-n
float<u~-1> — 71

float<wv * u*> — float<u> — 7

float<u> — 71
float<v> — float<u> — 71

12112112

Vaj - apda; = aj,q; := o, }7
Va{a = a -1}1

VBa.{B := [* a*}T

Voaq -+ oy, T
Va.T

ViBa.T

211211

110

Va.float<a®> — float<a¥® * u> float<u> (a not free in u)

* These can be composed to build isomorphisms such as

Va.float<a> — float<a> — float<a> = float<1> — float<1>

_>T

C1
C2
C3

R1
R2
R3

Pi Theorem, for first-order types

Suppose

T =Vaq,...,q,.float<u;> — --- — float<u,> — float<uy>.

Let A be mXxn matrix of exponents of variablesin u,...,u, . Let
B be m-vector of exponents in u,. If AX=B is solvable, then

T float<1l> — -+ — float<1l> — float<1>

where 7 is the rank of A.

Proof. lteratively apply primitive isomorphisms C1-C3 and R1-R3 that
correspond to column and row operations on matrix A, producing the
Smith Normal Form of A. Then apply r instances of isomorphism D and
we’re done!

Summary

e The semantics of units is all about “invariance under
scaling”

— Program behaviour is invariant under changes to base
units

— Polymorphic functions have “scaling properties” derived
from their types

* Nice connection to classical results from dimensional
analysis

* This “extensional” approach to safety can be applied
in other domains too e.g. “high-level types for low-
level programs”, effect systems

