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NASA “Star Wars” experiment, 1983

23rd March 1983. Ronald Reagan 
announces SDI (or “Star Wars”): ground-
based and space-based systems to 
protect the US from attack by strategic 
nuclear ballistic missiles.

http://upload.wikimedia.org/wikipedia/en/e/e5/C13571-8a.jpg


1985

Mirror on underside 
of shuttle

SDI experiment: 
The plan

Big mountain in Hawaii
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SDI experiment:
The reality
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The reality
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NASA Mars Climate Orbiter, 1999



Solution

• Check units at development time, by

– Static analysis, or

– Type checking



Not a new 
idea!



Last 
century...



...put into 
practice at 

last!



Refined types

• Conventional type systems for languages such as Java, 
C#, ML and Haskell catch many common programming 
errors
– Invoking a method that doesn’t exist
– Passing the wrong number of arguments
– Writing to a read-only field

• So-called refined type systems layer additional 
information onto the underlying types
– Size-of-array, to catch out-of-bounds access
– Effect information, to limit scope of side effects
– Other simple invariants (e.g. balanced-ness of trees)
– Units-of-measure, to catch unit and dimension errors



Overview

• Lecture 1: Practice

– Gentle tour through units-of-measure in F#

– Using Visual Studio 2008, or from fsi

– Demos: physics, Xbox game

• Lectures 2 and 3: Theory

– The type system and type inference algorithm

– Semantics of units; link to classical dimensional 
analysis



Units-of-measure design

 Minimally invasive
– Type inference, in the spirit of ML & Haskell 

• Annotate literals with units, let inference do the rest

• But overloading must be resolved

 Familiar notation, as used by scientists and engineers

 No run-time cost: units are not carried at runtime

 Extensible: not just for floats!

No support for dimensions (classes of units, such as mass)

No automatic unit conversions (but programmer can define 
them)



Feature Tour in 
Visual Studio 2008



Summary (1)

Declaring derived units

Declaring base units

Constants with units

Types with units

Unit conversions

Dimensionless quantities

Interop



Summary (2)
Unit-polymorphic functions

Polymorphic zero

Polymorphic types



Application area 1: statistics

Arithmetic mean

Standard deviation

Input: list of numbers

Geometric mean

Unit-
polymorphic 

types?



Application area 2: calculus

• Lots of higher-order functions (called “operators” by 
mathematicians) e.g. 

differentiate : (RR)(RR)

• These should have units! e.g. 

differentiate : (RuRv)(RuRv/u)



Application area 2: calculus

Of course in practice, we use numerical methods:

Differentiation

Integration

Root-finding



Summary (3)
Unit-parameterized types

Polymorphic recursion in types

Overloaded static members

Polymorphic recursion in functions



Are units useful?
• We hope so!

– They really do catch unit errors (e.g. Standard deviation vs variance in 
machine learning algorithms)

– They inform the programmer, and “correct” types help catch errors 
e.g.

• Lots of “non-standard” applications
– Finance (units: USD/yr, etc.)

– Graphics (units: pixels, pt, etc.)

– Games (units: as in physics!)

– Search (units: hits/page, etc.)



Questions?
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Polymorphic type inference

• Type systems of SML, Caml, Haskell, F# are all based 
on type inference for let polymorphism
– Old technology! A theory of type polymorphism in 

programming, Robin Milner, 1978.

– Polymorphic types (type schemes) are introduced by let 
bindings, lambda bindings are non-polymorphic



Polymorphic type inference, cont.

• Hundreds of papers have extended this system

1. To support polymorphism for ¸ e.g. MLF, HMF, FPH, 
giving ML the expressiveness of System F

2. To add features such as GADTs, 9

3. To support polymorphism over other entities e.g. records 
(“row polymorphism”) or effects

• Units-of-measure are an example of 3.



Units as types?

• Can’t we just code up units-of-measure as types? 
E.g. Acceleration is just 

• No! This doesn’t respect properties of units e.g. 

Need commutativity to make units match

Need inverses and identity to make units match



Grammar for units

Unit expressions

Base units e.g. kg

Unit variables e.g. ‘u

No units (dimensionless)

Product of units

Inverse

Unit quotient

Integer powers 
of units



Equations for units

Equivalence relation

Congruence

Abelian group axioms



Equational theories

• =U is an example of an equational theory

• Other examples:

– AC (just associativity and commutativity)

– AC1 (add identity, to get commutative monoids)

– ACI (add idempotence)

– BR (boolean rings)

• For units we have AG, the theory of Abelian groups



The case of the vanishing variable

• Write vars(u) for the set of variables syntactically 
occurring in unit expression u e.g.

• Our theory (AG) is non-regular, meaning that

• This is the source of many challenges!
– For example, we have to be careful when saying “® not 

free in ...”



Deciding equations

How to check if equation 

is valid?

1. Put unit expressions u and v into normal form:

2. Check equality syntactically.

Non-zero exponents

Variables and base units 
ordered alphabetically



Normal form example

• Unit expression:

• Normal form:



Solving equations

• Deciding equations gives us type checking.

• For type inference, we need to solve equations.

• Here, the compiler generates a fresh unit variable ®
for the units of y, then solves the equation



Multiple solutions

• In general, there may be many ways to solve e.g.

• This has (at least) three ground solutions

• But all solutions are subsumed by a non-ground, 
`parametric solution’:



Equational unification

• Solving equations with respect to an equational theory E is 
called equational unification.
– Given two terms t and u, find substitution S such that 

S(t) =E S(u)

• Syntactic unification is the basis of ML type inference.
– principal types property stems from the fact that if two terms are 

unifiable then there exists a single most general unifier that subsumes 
all others

• Not all equational theories enjoy this property. Many theories 
require multiple substitutions to express all solutions.

A good book:
“Term Rewriting and All That” by 

Baader and Nipkow



AG unification

• For units, a unifier of two unit expressions u1 and u2 is a 
substitution S on unit variables such that S(u1)=U S(u2)

• Fortunately, Abelian Group unification is 
– unitary (single most general unifiers exist with respect to the 

equational theory), and 

– decidable (algorithm is a variation of Gaussian elimination)

• First, notice that

• So we can reduce the problem to unifying a unit expression 
against 1.



Unification algorithm



Unification in action

®3 * ¯2 =U kg6

rewrite

apply

apply

Success!

apply



Correctness of Unification

• We can prove the following:

“is more general than”



Grammar for types

Type 
expressions

Type variables

Unit-parameterized 
floats

Function types



Equations for types

• Obvious extension from units, such that



Unification for types

Just ordinary unification with 
unification for units plugged in!



Type schemes

• Formally, a type scheme is a type in which (some) 
unit variables are quantified:

• A type scheme instantiates to a type by replacing its 
quantified variables by unit expressions:



Type scheme instantiation, cont.

• We write 

• Surprising example:



Type system

• Essentially the same as ML, with one new rule:

• This just says that typing respects “rules of units”

• Rule for variables just instantiates the type scheme 
of the variable:



Type Inference Algorithm

• Can we just plug in our new unification algorithm 
into usual ML inference algorithm?

• Not quite. We get soundness, but not completeness 
– i.e. some legal programs are rejected. 

– This is because just using “free unit variables” in the rule 
for let is not sufficient. 

– Can be fixed by “normalizing” the type environment 
before generalizing unit variables. For details, see my 
thesis.



Correctness of Inference Algorithm

• Suppose algorithm Infer(e) produces a type scheme for 
expression e. We can prove the following:



Type Scheme Equivalence

• Two type schemes are equivalent if they instantiate to the same set of 
types, up to the equational theory:

• For vanilla ML, this just amounts to renaming quantified type variables or 
removing redundant quantifiers.

• For F# with units, there are many non-trivial equivalences.  E.g.



Simplifying type schemes

• We can show that two type schemes are equivalent iff there is an 
invertible substitution on the bound variables that maps between 
them (this is a “change of basis”)

• Idea: compute such a substitution that puts a type scheme in some 
kind of preferred “normal form” for printing. Desirable properties:
– No redundant bound or free variables (so number of variables = number 

of “degrees of freedom”)

– Minimize size of exponents

– Use positive exponents if possible

– Unique up to renaming

• Such a form does exist, and corresponds to Hermite Normal Form 
from algebra
– Pleasant side-effect: deterministic ordering on variables in type



Simplification in action



Technical summary

• Grammar for units

• Equational theory of units (AG) with

– decidable equality

– decidable and unitary unification

• Change of basis algorithm, used for

– type scheme simplification

– generalization (not discussed today)

• Main Result: principal types



Executive summary

• Units-of-measure types occupy a “sweet spot” in the 
space of type systems

– Type system is easy to understand for novices (just high-
school “rules of units”)

– Types have a simple form (e.g. no constraints, bounds)

– Types don’t intrude (there is rarely any need for 
annotation)

– Behind the scenes, inference is non-trivial but practical



Questions?
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Type safety

• “Well-typed programs don’t go wrong” (Milner, 
1978)

– They don’t dump core or throw MissingMethodException

– Formalized by adding a wrong value to the semantics (e.g. 
“applying” an integer to a value evaluates to wrong) and 
then showing that well-typed expressions don’t evaluate 
to wrong

– These days usually formalized as syntactic type soundness:
• Preservation: if e:¿ and e reduces in some number of steps to e’, 

then e’:¿, and

• Progress: if e:¿ then either e is a final value (constant, lambda, etc) 
or e reduces to some e’ (i.e. it doesn’t “get stuck”)



Units going wrong?

• What “goes wrong” if a program contains a unit error?
– Nothing!

– Unless runtime values are instrumented with their units-of-measure. 
But that would be cheating (runtime values don’t have units)!

– We need a different notion of “going wrong”

• In Nature, units do not go wrong! Instead, physical laws are 
invariant under changes to the unit system.

• So in Programming, the real essence of unit correctness is the 
invariance of program behaviour under change to units. 



Units going right

let checkin(baggage:float<lb>, allowance:float<lb>) 

= if baggage > allowance then printf “Bags exceed limit”

checkin(88.0<lb>, 44.0<lb>)

Metricate

let checkin(baggage:float<kg>, allowance:float<kg>) 

= if baggage > allowance then printf “Bags exceed limit”

checkin(40.0<kg>, 20.0<kg>)

Same behaviour: 
passenger is turned away!



Units going wrong

let checkin(baggage:float<lb>, allowance:float<cm>) 

= if baggage > allowance then printf “Bags exceed limit”

checkin(88.0<lb>, 55.0<cm>)

Metricate

let checkin(baggage:float<kg>, allowance:float<cm>) 

= if baggage > allowance then printf “Bags exceed limit”

checkin(40.0<lb>, 55.0<cm>)

Different behaviour! 



Polymorphic units going wrong?

• Suppose we have a function

• What does it mean for this function to “go wrong”? We surely 
know it when we see it:

• But what if it’s implemented by

foo : float<‟u> -> float<‟u^2>

FPGA human computer
analogue computer

Machine code

let foo (x:float<„u>) = x*x*x

http://upload.wikimedia.org/wikipedia/commons/d/d4/Brain_090407.jpg
http://upload.wikimedia.org/wikipedia/commons/7/7e/AKAT-1.JPG


Polymorphic units going right

• Again: the essence of unit correctness is invariance under 
scaling. For

this amounts to the property

for any positive “scale factor” k.

• Suppose that we discovered that

Then we would know that foo’s type is “lying”!



Representation Independence

• Invariance under scaling is an example of representation 
independence.
– We can change the data representation without changing the 

behaviour of a program

– Applied to polymorphic functions, this is known as parametricity
(Reynolds, 1983)

• Example for ordinary polymorphism: if

then for any “change of representation” function f,



Parametricity for units

• First define a scaling environment Ã: a map from unit 
variables to positive scale factors. Extend to unit expressions:

• Now define a binary “logical” relation over values, indexed by 
types and type schemes:

• Now we can prove the “fundamental theorem”:



Scaling theorems for free

Example 1. If

f : 8®¯:float<®> -> float<¯> -> float<® * ¯^-1>

8k1; k2 > 0; f (k1 * x) (k2 * y) = (k1=k2) * f x y

then

• First consequence of parametricity: given just the 
type of a function, we can obtain “theorems for free”



Scaling theorems for free

then

diff : 8®¯:float<®> -> (float<®> -> float<¯>)

-> (float<®> -> float<¯ * ®^-1>)

8k1; k2 > 0;diff h f x =
k2

k1
¤ diff

µ
h

k1

¶µ
¸x:

f(x ¤ k1)

k2

¶µ
x

k1

¶

Example 2. If



Zero

• Why is zero polymorphic in its units? Answer: 
because it is invariant under scaling:

• This holds for no other values, so they cannot be 
polymorphic.



Definability

• Parametricity can also be used to show that some types are 
uninhabited, or at least contain only “boring” functions.

• Example for ordinary polymorphism: no functions have type

• For units, we can show that given only basic arithmetic (+, -, *, 
/, <) there are no interesting functions with type

• Exercise: intuitively, why is this? Hint: try using Newton’s 
method to compute square root, with polymorphic units.



Type isomorphisms

• We write
if the types are isomorphic, meaning

• Examples:

Need parametricity
to prove these two!



A surprising isomorphism

• Assuming positive values only:

Proof.



A surprising isomorphism

• Assuming positive values only:

Informally, consider what functions have type

• They must be equivalent to



Another surprising isomorphism

• Assuming positive values only:

Exercise: prove it!



Dimensional analysis

• Old idea (Buckingham): given some physical system with known 
variables but unknown equations, use the dimensions of the 
variables to determine the form of the equations. Example: a 
pendulum.

θ

m

l



Worked example

• Pendulum has five variables:
mass m M
length l L
gravity g LT-2

angle θ none
time period t T

• Assume some relation f(m, l, g, θ, t) = 0

• Then by scaling invariance f(Mm, Ll, LT-2g, θ, Tt) = 0 for any "scale 
factors" M,L,T

• Let M=1/m, L=1/l, T=1/t, so f(1,1,t2g/l, θ, 1) = 0

• Assuming a functional relationship, we obtain

Think of M L T as 
(arbitrary) units for 

Mass Length and Time



Dimensional analysis, formally

Pi Theorem
Any dimensionally-invariant relation 

f(x1,…,xn )=0

for dimensioned variables x1,…,xn whose dimension exponents are 
given by an m by n matrix A is equivalent to some relation

g(P1,…,Pn-r )=0

where r is the rank of A and P1,…,Pn-r  are dimensionless products 
of powers of x1,…,xn.

Proof: Birkhoff.



Primitive isomorphisms
• We can classify isomorphisms:

• These can be composed to build isomorphisms such as 



Pi Theorem, for first-order types

• Suppose

Let A be m£n matrix of exponents of variables in u1,...,un. Let 
B be m-vector of exponents in u0. If AX=B is solvable, then

where r is the rank of A.

• Proof. Iteratively apply primitive isomorphisms C1-C3 and R1-R3 that 
correspond to column and row operations on matrix A, producing the 
Smith Normal Form of A. Then apply r instances of isomorphism D and 
we’re done!



Summary

• The semantics of units is all about “invariance under 
scaling”
– Program behaviour is invariant under changes to base 

units

– Polymorphic functions have “scaling properties” derived 
from their types

• Nice connection to classical results from dimensional 
analysis

• This “extensional” approach to safety can be applied 
in other domains too e.g. “high-level types for low-
level programs”, effect systems


