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The Grand View

Recall what we are doing:

| Programming Languages |

(2a) Part 5: From CML to Behaviours

(1) Part 6:
Flow Logic | Process Calculi |
for CML (2b) Parts 1-4: Flow Logic for Process Calculi

Mobile Ambients, m-calculus, COWS
Y
| Properties of Interest |
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Motivation

Concurrent ML
@ functions and synchronous operations are first class values
@ typed channels and processes are created dynamically
Behaviours
@ express the overall communication actions performed

@ can serve both as a description of concrete behaviour and as a
specification of intended behaviour

Type and Effect Systems

@ facilitates extracting behaviours from programs

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Syntax of CML subset

Expressions

e = clx|fnx=>el|e &
| letx=¢ in e
| recfx=>e
| if e then e else &

Constants:
¢ u= () |true|false|n|pair | fst|snd
|  nil|cons|hd|tl|disnil |+ |*|=]- -
| send | receive | sync
|  fork, | channel, | choose | wrap
Shorthands:
input e = sync (receive e)

output e = sync (send e) M-[AB
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pipe [f1, f5, f3] inp out
l inp
f;

l out

A VKR CENTRE OF EXCELLENCE
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Example: the pipe function

let node =
fn £ => fn inp => fn out =>
fork, (rec loop d => let v = input inp
in output (out, f v);
loop d)

in rec pipe fs =>fn inp => fn out =>
if isnil fs
then node (fn x => x) inp out
else let ch = channel, ()
in (node (hd fs) inp ch;
pipe (tl fs) ch out)
MT-1 AB

A VKR CENTRE OF EXCELLENCE
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The CML primitives

@ fork, e spawns a process computing e ()

@ channel; () creates a new channel

sync, receive and choose do not perform the operations -
they produce delayed communications (also called events).
sync will activate the communications:

@ sync (send (ch,v)): sends the value v on the channel ch
@ sync (receive ch): receives a value on the channel ch

@ sync (choose [ep,---,e,]): chooses between a list of
communication possibilities

@ sync (wrap (e;, e)) is “similar’ to e;(sync e;)

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Example: Adding the possibility of failure
pipe [f1, f2, f3] inp out
l inp

| fail

i out
MT-LAB

A VKR CENTRE OF EXCELLENCE
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Example: Adding the possibility of failure

let node =
fn f => fn inp => fn out =>
fork, (rec loop d =>
sync (choose
[wrap (receive inp,
fn x => sync (send (out, f x));
loop d),
send(fail, ())1))
in rec pipe fs =>fn inp => fn out =>
if isnil fs
then node (fn x => x) inp out
else let ch = channel, ()
in (node (hd fs) inp ch;
pipe (tl fs) ch out) MT-LAB
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The map function

rec map £ => fn xs =>
if isnil xs then nil
else cons(f (hd xs)) (map f (tl xs))

Exercise:
A concurrent version?

Epilogue

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Controlling a fan

In Concurrent ML:

let therm = channel, ();
fan = channel, ();
temp = channel, Q;
cool = channel, ()
in fork, (... sensor ...)
fork,, (... control
fork,, (... cooling

N NS e
-

A VKR CENTRE OF EXCELLENCE
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Controlling a fan

rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,
fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),
fn d => sensor (t1,t2))])

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Epilogue
Controlling a fan
rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,
fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),
fn d => semsor (t1,t2))])
rec control d =>
let t = sync (receive temp)
in ((if t > upper then sync (send(cool, ‘‘On’’))
else if t < lower then sync (send(cool, ‘‘0ff’’))
else ‘‘0Ok’’); control d)
MT-1AB

A VKR CENTRE OF EXCELLENCE
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Controlling a fan

rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,
fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),
fn d => sensor (t1,t2))])
rec control d =>
let t = sync (receive temp)
in ((if t > upper then sync (send(cool, ‘‘On’’))
else if t < lower then sync (send(cool, ‘‘0ff’’))
else ‘‘0Ok’’); control d)
rec cooling state =>
let new = sync (receive cool)
in if new = state then cooling state

else (sync (send(fan, new)); cooling new)

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Typing system
Behaviours:

n= el rlt| r?t| t CHAN,
FORKW b | bl;bz | bl—l—bz

|  RECH.b|
Types:
t = unit | bool | int | o
| t—="t|txt|tlist
| tchanr|tcomb
Regions:
r == l|ln+n (sets of labels)

| »

Type schemes:
ts == t | Vits | Va.ts | Vp.ts MT- AB
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Example: the pipe function (again)

let node =
fn £ => fn inp => fn out =>
fork, (rec loop d => let v = input inp
in output (out, f v);
loop d)

in rec pipe fs =>fn inp => fn out =>
if isnil fs
then node (fn x => x) inp out
else let ch = channel, ()
in (node (hd fs) inp ch;
pipe (tl fs) ch out)
MT-1 AB

A VKR CENTRE OF EXCELLENCE

136 / 18



Abstract  Grand View  Ambients  Pl-Calculus  Executive ~ COWS Traditional  Epilogue

Example: behaviour for node

Assumptions:

f . ty —>b t
inp : tf;chann
out : t, chann
node f inp out: FORK, ( (n?t; b; Rty 7))

Fork a process that will

read a value of type t; on a channel in

do the computation £ with behaviour b

write a value of type t» on a channel in rp, and
recurse

A VKR CENTRE OF EXCELLENCE

OF EXCELLENC
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Example: behaviour for pipe

Assumptions:

fs : (t —Pt) list
inp : tchann
out : tchan n,

pipe fs in out:

FORK, (REC B.((rn + rn0)?t; ¢ (2 + ro)'t; )
+ t CHAN,;
FORK, (REC B.((n + rn)?t; b; (r + no)'t; B3));

- fork a process that ... or
- allocate a new channel in r,

- fork a process that ... and
- recurse MT LAB

OF EXCELLENC
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Example: Adding failure (again)

let node =
fn £ => fn inp => fn out =>
fork, (rec loop d =>
sync (choose
[wrap (receive inp,
fn x => sync (send (out, f x));
loop d),
send(fail, 0)1))
in rec pipe fs =>fn inp => fn out =>
if isnil fs
then node (fn x => x) inp out
else let ch = channel, ()
in (node (hd fs) inp ch;
pipe (tl fs) ch out) MT-LAB

139 / 18



Abstract  Grand View  Ambients  Pl-Calculus  Executive ~ COWS
Example: behaviour for node

Assumptions:

f @ 4 —b ts
fail : wunit chan ny
inp : t;chann
out : t, chann,

node f inp out:
FORK ( (n?t; b; Rty 7+ rolunit))

Fork a process that will

- read a value of type t; on a channel in

- do the computation £ with behaviour b

- write a value of type t» on a channel in r», and

- recurse

or

- write a value of type unit on a channel in rp, and
- terminate

Traditional Epilogue

A VKR CENTRE OF EXCELLENCE
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Example: behaviour for pipe

Assumptions:

fs @ (t—bt)list

fail : wunit chan ny
inp : tchann
out : tchann

pipe fs in out:

Traditional Epilogue

FORK, (REC B.((rn + r0)?t; ¢; (r2 + ro)'t; B + rolunit))

+ t CHAN,;

FORK7T (REC ﬁ.((fl + I’o)?t; b; (fg + I’o)!t; ﬁ + ro!unit));

- fork a process that ... or

- allocate a new channel in r,
- fork a process that ... and

- recurse

A VKR CENTRE OF EXCELLENCE

OF EXCELLENC
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Determine the behaviour of the concurrent map functions

MT-LAB

A VKR CENTRE OF EXCELLENCE

Static Analysis of Services

142 / 18




Abstract Grand View

Ambients  Pl-Calculus  Executive ~ COWS Traditional  Epilogue

Types for constants: TypeOf(c)

send
receive
sync
fork,
channel,
choose

wrap

input

Va, p. (achanp) x o —° (v com plav)
Va, p. (a chan p) —° (a com p?a)

Va, 8. (a com 3) =" «
Va, 8. (unit —” o) —
aCHAN,(

FORK”fgunit

Va. unit — « chan /)
Va, B. (acomF)list —° (v com [3)

VOC]_, Qo, 617 62-(051 com Bl) X (al _>ﬁ2
—< (ap com (y; 32)

062)

Va, p. (achan p) =™ «

output Va,p. (achanp) x a ="

A VKR CENTRE OF EXCELLENCE
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type environment - e : type & behaviour
tenvkEc:t&e if TypeOf(c) >t
tenvix — ts|Fx:t& e ifts>t

tenvjx — tj]Fe:t' &b
tenvfnx = e:t—-bt &e

tenvi e :t =Pt & by tenvbk et & by
tenvt e et/ & by; by b

tenvike :t; & by tenv[x — ts]F e : th & by
tenv - let x=¢; in e : tr & by; by
if ts = gen(tenv,b;)t;

Exercise:
Add the inference rules for recursion and conditions. MT-LAB

A VKR CENTRE OF EXCELLENCE
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A design decision

@ Early subsumption — or subtyping
Coercions between types can happen at any time inside any type
@ add the subtyping rule:

%ifrgt’andbgb/
@ Late subsumption — or subeffecting
Generic instantion produce the required instances.
e In TypeOf(c) we shall use constrained type schemas as
VB:t1 = t [3 > b]instead of ;1 —° B
o add the subeffect rule:

tenve:t &b

— — — _ifbC b
tenvl—e:t&b’I -

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Constraint type schemas: TypeOf(c)

send
receive
sync
fork,
channel,
choose

wrap

Va, p, b1, B2 (echan p) x a =7 (acom fr)[e < f1, pla < 3]
Yot p,fr Bo. (o chan p) — (o com e < i, p7ar < (]

Vo, B1, B2. (a com B1) =2 afB < B3]

Ya, 81, Bo. (unit —7 a) —% unit[FORK, 31 < (3]

Va, 3, p. unit —” (a chan /)[a CHAN, < 3,/ < p]

Vo, B1, B2, B3. (vcom f1)list —2 (a com B3)[e < (o, B < f33]

Val?a27ﬂ1a627/83764' (051 Comﬂl) X (0(1 —)’82 042)
—% (i com f)[e < s, B1; B2 < ]

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Generalisation and instantiation
Generalisation

gen(tenv, b)t = let aBp = FV(t)\ (FV(tenv) U FV (b))
in Vagp.t

MT-1AB

A VKR CENTRE OF EXCELLENCE
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Generalisation and instantiation

Generalisation

gen(tenv, b)t = let afBp = FV(t) \ (FV(tenv) U FV(b))
in Vapgp.t
Instantiation
vapp.t[C] = t'
where C is a (possible empty) set of constraints of the form
B>bandp>r _
There exists a substitution § with DOM(6) = {ap} such
that
@ ft=1t'and
@ all the constraints of C are satisfied, that is,

e §3J6bforall B> bin C, and
@ OpDOrforallp>rinC. MT-LAB

OF EXCELLENC
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Ordering on behaviours

Axioms and rules that formally state:

C is a pre-order
C is a pre-congruence
sequencing ; is associative
sequencing distributes over join
(b1 + b2); bs T by; bs + by; bs
bi; b3+ by; b3 T (b1 + bo); b3
¢ is left and right identity for sequencing
join + is least upper bound operation
recursion can be unfolded
REC 8.b C b[S +— REC f.b]
b[8 — REC (3.b] € REC S.b

Traditional

Epilogue

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Example (1)

let node = fn £ => fn inp => fn out =>
fork, ((rec loop d => let v = input inp
in output (out, f v); loop d) )
in ---

Type for node:

s
Y ay,an, 3, p1,02- (1 — az) 5 (@1 chan p;) - (ap chan py) & unit

where ¢ = FORK,(REC . (p1701; 5; palaz; 7))

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Example (2)

let node = ---
in rec pipe fs => fn inp => fn out =>
if isnil fs then node (fn x => x) inp out
else let ch = channels ()
in (node (hd fs) inp ch; pipe (t1 fs) ch out)

Type for pipe:

v 0475,P1,p23~
((« = a) 1ist) < (a chan (p; U{C})) - (o chan p,) > unit

where ¢ =
REC . (FORK,(REC 8".((p1 U{C})?; ¢; pala; B"))

+ a CHAN C; FORK(REC 8. ((p1 U{C}) 7o 85 Clas 81)); 3)
=\Vll AB

A VKR CENTRE OF EXCELLENCE
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Exercises

Determine the type and behaviour of the concurrent map
functions and the fan controller.

Epilogue

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Theory: overview

Structural operational semantics for

e CML

@ behaviours
Subject Reduction Theorem:

@ types are preserved by CML-evaluation steps

@ steps in CML-semantics can be mimicked in behaviour semantics
The developments

@ simplified semantics: only input and output

@ complex semantics: also sync, receive and send

Epilogue

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Sequential Semantics of CML
Evaluation in context:
(fax=>e)v — e[x — V]
let x=vine — e[x — V]
rec f x =>e — (fn x => e)[f — (rec f x => ¢)]
if true then ¢ else & — ¢
if false then ¢ else e — &

Vi Vo — V3 if(V]_, Vo, V3) €0

MT-LAB

A VKR CENTRE OF EXCELLENCE

153 / 18



Abstract  Grand View  Ambients  Pl-Calculus  Executive ~ COWS Traditional  Epilogue

Sequential Semantics of CML

Evaluation in context:

(fax=>¢e)v — e[x — V]

let x=vine — e[x — V]

rec f x =>e — (fn x => e)[f — (rec f x => ¢)]
if true then e else & €1

if false then ¢ else & €

Vi W V3 if(V]_, Vo, V3) €0

Evaluation contexts:

w= []|Ee|lvE]|letx=FEine |if E then e else e

where

dIx|ftax=el|(c,vi) | | (c vayeny W)

153

MT AB

¢’ can be any constant except sync, channel and fork. CENTRE OF EXCELNCE
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Concurrent Semantics of CML

CP, PP[pi — Ele]] = —,; CP, PP[pi — El[e]]

if €1 — €

CP, PP[pi — E[channel()]] = CHAN/C' CP U {ci}, PP[pi — E[ci]]
if ci ¢ CP

CP, PP[pi — E[fork, e]] :»E?RKTP"O
CP, PP[pi — E[O]][pio — e O]

if pip & dom(PP) U {pi}

Annotation of AZ,V

ev == ¢ | (c!,ci?) | CHAN, ci | FORK  pi LIIT AB

154 / 18



Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Semantics of communication

The simple case:

CP, PP[p; : El[?utput(m v)|][p2 : Ex[input c/]]
—bl ! CPPPlpy B[P - BolV])

if p1 # p2

A VKR CENTRE OF EXCELLENCE
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Semantics of communication

The simple case:

CP, PP[p; : El[?utput(m v)|][p2 : Ex[input c/]]
10 P PPy - E[V][p: ¢ B[]

if p1 # p2

More generally:
(cilyei?)

(v, v2) ~> (e, &)
[p1 — Ei[sync vi], po — Ex[sync vo]]

(cilyci?)

=55 [ Eiled], po — Eoles]]
if p1 # p2

A VKR CENTRE OF EXCELLENCE
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Matching

((send(ci, v)), (receive ci))(dkii?) (v,v)

di,d
(V17 V3)( r{’g)(ela e2)
di,d
(Wrap(vl> V2)7 V3)( ’1\22)(‘/2 €1, 6‘2)

Traditional Epilogue

plus rules for choose and swopping input and output

MT-LAB

A VKR CENTRE OF EXCELLENCE
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CP, PP[pi — €] —ps CP', PP'[pi — €]

[[Fe:t&b

PB[pi ~ b]

A VKR CENTRE OF EXCELLENCE
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[[Fe:t&b

PB[pi ~ b]
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CP, PP[pi — €] —ps CP', PP'[pi — €]

[[Fe:t&b

PB[pi ~ b]

;é
ps

[[Fe:t&b

PB'[pi — b"]
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Subject reduction theorem

[[Fe:t&b

PB[pi r— b]

CP, P,‘D[pi —e] —ps CP/, P,?’[pi — €]

;21
ps

[JFe t&b

b/ E b//

PB'[pi 1 b']

where 2 is 'the translation of ' ev

MT-1AB

A VKR CENTRE OF EXCELLENCE
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Semantics of behaviours: sequential

p=-"e =/
b=°b
b1:>pbi b1:>p\/

by; b2:>pbi; b, by by="rb,

plus rules for choice and recursion

Annotations of =P:
p == €| r't | r?t|t CHAN, | FORK;, b

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Semantics of behaviours: concurrent

b=-2b
PBlpi — b]=—>2,PBpi b/

b1:>r[tbi b2:>r?tb£

. . . . if piy # piz
[pix = by, pia = by]="1"". [piy v by, pip — by
Annotations on =—?:
a == €| rlt?r
|t CHAN, | FORK, b
MT- AB

A VKR CENTRE OF EXCELLENCE
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Simulation on behaviours
S is a simulation on (closed) behaviours if
e /S bifandonlyif b=,/
@ if by="'b] and by S by then there exists b, and p, such that
— by=P2 b},
- p1 S? ps
— b, S b
where
8% ={(p,p) | p € {e, r't, r7t,t CHAN,}} U {(FORK, b,FORK, b') | b S b'}

Define & as the largest simulation.

Lemma: Soundness of Ordering
C is a simulation.

The ordering 5 is undecidable. MTAB
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Subject reduction theorem

[[Fe:t&b

PB[pi r— b]

CP, P,‘D[pi —e] —ps CP/, P,?’[pi — €]

;21
ps

[JFe t&b

b/ E b//

PB'[pi 1 b']

where 2 is 'the translation of ' ev

MT-1AB

A VKR CENTRE OF EXCELLENCE
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Algorithm

The algorithm is based on Milner's W
@ use unification for the types

@ collect constraints for the behaviours

Problem: Constraints need not have principal solutions:
incomparable solutions could be mixed.

Wi(e) = (s.d.C,5) where
s: simple type: only behaviour variables
d: simple behaviour: no REC behaviours
C: set of constraints
S: set of solution restrictions

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Analysing behaviours

pipe fs in out:

FORK7r (REC 6.((r1 + ro)?t; €, (rg + I‘o)!t; ﬁ))
+  t CHAN,;
FORK, (REC B.((rn + r0)?t; b; (rn + ro)'t; 5));

Finite communication topology?
@ how many channels might be created?

@ how many processes might be created?

Epilogue

A VKR CENTRE OF EXCELLENCE

OF EXCELLENC
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Analysis for finite communication topology

Judgements: b : (no. of channels, no. of processes)

Definition:
-e:(0,0) Frit:(0,0) Ft?t:(0,0)
Fb:(n, m)
+ HAN, : (1
£ CHAN, : (1,0) - FORK,b : (n,m+ 1)
= b:(n,m)

= 3:(0,0) - REC 8.b: (n, m)

F bl . (I’ll7 ml) H b2 . (n2, m2)
l_ bl; b2 : (n1 + nyp, my —+ m2)
H bl . (I’ll, ml) H b2 . (I72, m2)
F by + by @ (max(ny, na), max(my, my))

provided that ...

provided that ...

Epilogue

provided that MT.- AB
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Examples: Do we have a finite communication
topology?

@ REC 4.t CHAN, + (r't; )

@ REC 5.r7t + (t CHAN,: )

© REC 3.t CHAN, + (r't; 5; B)

@ REC B.e+ (r!t; 8;8)

@ REC f.t CHAN, + FORK,(r!t; §)

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Exercise

Determine whether or not the concurrent map functions and
the fan controller have a finite communication topology.

MT-LAB

A VKR CENTRE OF EXCELLENCE
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Analysing behaviours

pipe fs in out:

FORK, (REC B.((rn + ro)?t; ¢; (2 + ro)'t; B))
+ t CHAN,;
FORK, (REC B.((rn + rn)?t; b; (rn+ r)'t; 5));

Static processor allocation: Assume that all instances of
processes labelled 7 will be running on the same processor -
which requirements does this put on the processor?

@ how many channels labelled r might be created?
@ how many processes labelled m might be created?

@ how many times might a channel labelled r be used for

input/output?
putfoutp MT- A5
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Analysing behaviours

pipe fs in out:

FORK,T (REC ﬁ.((rl -+ ro)?t; €; (r2 + I’o)!t; ﬁ))
+ t CHAN,;
FORK, (REC B.((rn + r0)?t; b; (rn + ro)'t; 5));

Dynamic processor allocation: Which requirements does this
put on the processor?

@ how many channels labelled r might be created?
@ how many processes labelled 7 might be created?

@ how many times might a channel labelled r be used for
input/output?
MT-1AB
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Suggested Reading (1)

@ T. Amtoft, H. Riis Nielson, F. Nielson: Behavior Analysis for
Validating Communication Patterns. In Journal on Software Tools
for Technology Transfer, vol.2, pages 13-28, Springer, 1998.

Gives an overview of the development and of a computer system for
carrying out the analysis.

@ H. Riis Nielson and F. Nielson: Communication Analysis for
Concurrent ML. In ML with Concurrency. Monographs in
Computer Science, pages 185-235, Springer, 1997.
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Suggested Reading (2)

@ F. Nielson and H. Riis Nielson: From CML to its Process Algebra.
Theoretical Computer Science, vol. 155, pages 179-219, 1996.

@ T. Amtoft, F. Nielson, H. Riis Nielson: Type and Effect Systems:
Behaviours for Concurrency. Imperial College Press, 1999.

This book contains the full development.

@ H. Riis Nielson, F. Nielson: Static and Dynamic Processor

Allocation for Higher-Order Concurrent Languages. TAPSOFT'95,
LNCS 915.
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