Abstract Grand View Ambients PI-Calculus Executive cows Behaviours Traditional Epilogue

Static Analysis of Services

Flemming Nielson and Hanne Riis Nielson

Technical University of Denmark

MT-LAB

A VKR CENTRE OF EXCELLENCE

Types At Work, 2009

MT-LAB

A VKR CENTRE OF EXCELLENCE

/ 180

Static Analysis of Services

Part 5:

Extracting Process Calculus from Concurrent ML

MT-LAB

A VKR CENTRE OF EXCELLENCE

Static Analysis of Services

120 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

The Grand View

Recall what we are doing:

| Programming Languages |

(2a) Part 5: From CML to Behaviours

(1) Part 6:
Flow Logic | Process Calculi |
for CML (2b) Parts 1-4: Flow Logic for Process Calculi

Mobile Ambients, m-calculus, COWS
Y
| Properties of Interest |

A VKR CENTRE OF EXCELLENCE

OF EXCELLENC

121 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Motivation

Concurrent ML
@ functions and synchronous operations are first class values
@ typed channels and processes are created dynamically
Behaviours
@ express the overall communication actions performed

@ can serve both as a description of concrete behaviour and as a
specification of intended behaviour

Type and Effect Systems

@ facilitates extracting behaviours from programs

MT-LAB

A VKR CENTRE OF EXCELLENCE

122

18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Syntax of CML subset

Expressions

e = clx|fnx=>el|e &
| letx=¢ in e
| recfx=>e
| if e then e else &

Constants:
¢ u= () |true|false|n|pair | fst|snd
| nil|cons|hd|tl|disnil |+ |*|=]- -
| send | receive | sync
| fork, | channel, | choose | wrap
Shorthands:
input e = sync (receive e)

output e = sync (send e) M-[AB

123 / 18

pipe [f1, f5, f3] inp out
l inp
f;

l out

A VKR CENTRE OF EXCELLENCE

Static Analysis of Services

124 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Example: the pipe function

let node =
fn £ => fn inp => fn out =>
fork, (rec loop d => let v = input inp
in output (out, f v);
loop d)

in rec pipe fs =>fn inp => fn out =>
if isnil fs
then node (fn x => x) inp out
else let ch = channel, ()
in (node (hd fs) inp ch;
pipe (tl fs) ch out)
MT-1 AB

A VKR CENTRE OF EXCELLENCE

125 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

The CML primitives

@ fork, e spawns a process computing e ()

@ channel; () creates a new channel

sync, receive and choose do not perform the operations -
they produce delayed communications (also called events).
sync will activate the communications:

@ sync (send (ch,v)): sends the value v on the channel ch
@ sync (receive ch): receives a value on the channel ch

@ sync (choose [ep,---,e,]): chooses between a list of
communication possibilities

@ sync (wrap (e;, e)) is “similar’ to e;(sync e;)

MT-LAB

A VKR CENTRE OF EXCELLENCE

126 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue
Example: Adding the possibility of failure
pipe [f1, f2, f3] inp out
l inp

| fail

i out
MT-LAB

A VKR CENTRE OF EXCELLENCE

127 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Example: Adding the possibility of failure

let node =
fn f => fn inp => fn out =>
fork, (rec loop d =>
sync (choose
[wrap (receive inp,
fn x => sync (send (out, f x));
loop d),
send(fail, ())1))
in rec pipe fs =>fn inp => fn out =>
if isnil fs
then node (fn x => x) inp out
else let ch = channel, ()
in (node (hd fs) inp ch;
pipe (tl fs) ch out) MT-LAB

128 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional

The map function

rec map £ => fn xs =>
if isnil xs then nil
else cons(f (hd xs)) (map f (tl xs))

Exercise:
A concurrent version?

Epilogue

MT-LAB

A VKR CENTRE OF EXCELLENCE

129 / 18

MT-LAB

A VKR CENTRE OF EXCELLENCE

Static Analysis of Services

132 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Controlling a fan

In Concurrent ML:

let therm = channel, ();
fan = channel, ();
temp = channel, Q;
cool = channel, ()
in fork, (... sensor ...)
fork,, (... control
fork,, (... cooling

N NS e
-

A VKR CENTRE OF EXCELLENCE

OF EXCELLENC

133 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Controlling a fan

rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,
fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),
fn d => sensor (t1,t2))])

MT-LAB

A VKR CENTRE OF EXCELLENCE

134 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional

Epilogue
Controlling a fan
rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,
fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),
fn d => semsor (t1,t2))])
rec control d =>
let t = sync (receive temp)
in ((if t > upper then sync (send(cool, ‘‘On’’))
else if t < lower then sync (send(cool, ‘‘0ff’’))
else ‘‘0Ok’’); control d)
MT-1AB

A VKR CENTRE OF EXCELLENCE

134 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Controlling a fan

rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,
fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),
fn d => sensor (t1,t2))])
rec control d =>
let t = sync (receive temp)
in ((if t > upper then sync (send(cool, ‘‘On’’))
else if t < lower then sync (send(cool, ‘‘0ff’’))
else ‘‘0Ok’’); control d)
rec cooling state =>
let new = sync (receive cool)
in if new = state then cooling state

else (sync (send(fan, new)); cooling new)

MT-LAB

A VKR CENTRE OF EXCELLENCE

134

18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue
Typing system
Behaviours:

n= el rlt| r?t| t CHAN,
FORKW b | bl;bz | bl—l—bz

| RECH.b|
Types:
t = unit | bool | int | o
| t—="t|txt|tlist
| tchanr|tcomb
Regions:
r == l|ln+n (sets of labels)

| »

Type schemes:
ts == t | Vits | Va.ts | Vp.ts MT- AB

135 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Example: the pipe function (again)

let node =
fn £ => fn inp => fn out =>
fork, (rec loop d => let v = input inp
in output (out, f v);
loop d)

in rec pipe fs =>fn inp => fn out =>
if isnil fs
then node (fn x => x) inp out
else let ch = channel, ()
in (node (hd fs) inp ch;
pipe (tl fs) ch out)
MT-1 AB

A VKR CENTRE OF EXCELLENCE

136 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Example: behaviour for node

Assumptions:

f . ty —>b t
inp : tf;chann
out : t, chann
node f inp out: FORK, ((n?t; b; Rty 7))

Fork a process that will

read a value of type t; on a channel in

do the computation £ with behaviour b

write a value of type t» on a channel in rp, and
recurse

A VKR CENTRE OF EXCELLENCE

OF EXCELLENC

137 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Example: behaviour for pipe

Assumptions:

fs : (t —Pt) list
inp : tchann
out : tchan n,

pipe fs in out:

FORK, (REC B.((rn + rn0)?t; ¢ (2 + ro)'t;)
+ t CHAN,;
FORK, (REC B.((n + rn)?t; b; (r + no)'t; B3));

- fork a process that ... or
- allocate a new channel in r,

- fork a process that ... and
- recurse MT LAB

OF EXCELLENC

138 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue
Example: Adding failure (again)

let node =
fn £ => fn inp => fn out =>
fork, (rec loop d =>
sync (choose
[wrap (receive inp,
fn x => sync (send (out, f x));
loop d),
send(fail, 0)1))
in rec pipe fs =>fn inp => fn out =>
if isnil fs
then node (fn x => x) inp out
else let ch = channel, ()
in (node (hd fs) inp ch;
pipe (tl fs) ch out) MT-LAB

139 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS
Example: behaviour for node

Assumptions:

f @ 4 —b ts
fail : wunit chan ny
inp : t;chann
out : t, chann,

node f inp out:
FORK ((n?t; b; Rty 7+ rolunit))

Fork a process that will

- read a value of type t; on a channel in

- do the computation £ with behaviour b

- write a value of type t» on a channel in r», and

- recurse

or

- write a value of type unit on a channel in rp, and
- terminate

Traditional Epilogue

A VKR CENTRE OF EXCELLENCE

OF EXCELLENC

140

18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS
Example: behaviour for pipe

Assumptions:

fs @ (t—bt)list

fail : wunit chan ny
inp : tchann
out : tchann

pipe fs in out:

Traditional Epilogue

FORK, (REC B.((rn + r0)?t; ¢; (r2 + ro)'t; B + rolunit))

+ t CHAN,;

FORK7T (REC ﬁ.((fl + I’o)?t; b; (fg + I’o)!t; ﬁ + ro!unit));

- fork a process that ... or

- allocate a new channel in r,
- fork a process that ... and

- recurse

A VKR CENTRE OF EXCELLENCE

OF EXCELLENC

141 / 18

Determine the behaviour of the concurrent map functions

MT-LAB

A VKR CENTRE OF EXCELLENCE

Static Analysis of Services

142 / 18

Abstract Grand View

Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Types for constants: TypeOf(c)

send
receive
sync
fork,
channel,
choose

wrap

input

Va, p. (achanp) x o —° (v com plav)
Va, p. (a chan p) —° (a com p?a)

Va, 8. (a com 3) =" «
Va, 8. (unit —” o) —
aCHAN,(

FORK”fgunit

Va. unit — « chan /)
Va, B. (acomF)list —° (v com [3)

VOC]_, Qo, 617 62-(051 com Bl) X (al _>ﬁ2
—< (ap com (y; 32)

062)

Va, p. (achan p) =™ «

output Va,p. (achanp) x a ="

A VKR CENTRE OF EXCELLENCE

143 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

type environment - e : type & behaviour
tenvkEc:t&e if TypeOf(c) >t
tenvix — ts|Fx:t& e ifts>t

tenvjx — tj]Fe:t' &b
tenvfnx = e:t—-bt &e

tenvi e :t =Pt & by tenvbk et & by
tenvt e et/ & by; by b

tenvike :t; & by tenv[x — ts]F e : th & by
tenv - let x=¢; in e : tr & by; by
if ts = gen(tenv,b;)t;

Exercise:
Add the inference rules for recursion and conditions. MT-LAB

A VKR CENTRE OF EXCELLENCE

144 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

A design decision

@ Early subsumption — or subtyping
Coercions between types can happen at any time inside any type
@ add the subtyping rule:

%ifrgt’andbgb/
@ Late subsumption — or subeffecting
Generic instantion produce the required instances.
e In TypeOf(c) we shall use constrained type schemas as
VB:t1 = t [3 > b]instead of ;1 —° B
o add the subeffect rule:

tenve:t &b

— — — _ifbC b
tenvl—e:t&b’I -

MT-LAB

A VKR CENTRE OF EXCELLENCE

145 / 18

Abstract Grand View

Ambients PI-Calculus Executive cows Traditional Epilogue

Constraint type schemas: TypeOf(c)

send
receive
sync
fork,
channel,
choose

wrap

Va, p, b1, B2 (echan p) x a =7 (acom fr)[e < f1, pla < 3]
Yot p,fr Bo. (o chan p) — (o com e < i, p7ar < (]

Vo, B1, B2. (a com B1) =2 afB < B3]

Ya, 81, Bo. (unit —7 a) —% unit[FORK, 31 < (3]

Va, 3, p. unit —” (a chan /)[a CHAN, < 3,/ < p]

Vo, B1, B2, B3. (vcom f1)list —2 (a com B3)[e < (o, B < f33]

Val?a27ﬂ1a627/83764' (051 Comﬂl) X (0(1 —)’82 042)
—% (i com f)[e < s, B1; B2 <]

MT-LAB

A VKR CENTRE OF EXCELLENCE

146 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Generalisation and instantiation
Generalisation

gen(tenv, b)t = let aBp = FV(t)\ (FV(tenv) U FV (b))
in Vagp.t

MT-1AB

A VKR CENTRE OF EXCELLENCE

147 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Generalisation and instantiation

Generalisation

gen(tenv, b)t = let afBp = FV(t) \ (FV(tenv) U FV(b))
in Vapgp.t
Instantiation
vapp.t[C] = t'
where C is a (possible empty) set of constraints of the form
B>bandp>r _
There exists a substitution § with DOM(6) = {ap} such
that
@ ft=1t'and
@ all the constraints of C are satisfied, that is,

e §3J6bforall B> bin C, and
@ OpDOrforallp>rinC. MT-LAB

OF EXCELLENC

147 / 18

Abstract

Grand View Ambients PI-Calculus Executive COows

Ordering on behaviours

Axioms and rules that formally state:

C is a pre-order
C is a pre-congruence
sequencing ; is associative
sequencing distributes over join
(b1 + b2); bs T by; bs + by; bs
bi; b3+ by; b3 T (b1 + bo); b3
¢ is left and right identity for sequencing
join + is least upper bound operation
recursion can be unfolded
REC 8.b C b[S +— REC f.b]
b[8 — REC (3.b] € REC S.b

Traditional

Epilogue

MT-LAB

A VKR CENTRE OF EXCELLENCE

148 /

18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Example (1)

let node = fn £ => fn inp => fn out =>
fork, ((rec loop d => let v = input inp
in output (out, f v); loop d))
in ---

Type for node:

s
Y ay,an, 3, p1,02- (1 — az) 5 (@1 chan p;) - (ap chan py) & unit

where ¢ = FORK,(REC . (p1701; 5; palaz; 7))

MT-LAB

A VKR CENTRE OF EXCELLENCE

149 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue
Example (2)

let node = ---
in rec pipe fs => fn inp => fn out =>
if isnil fs then node (fn x => x) inp out
else let ch = channels ()
in (node (hd fs) inp ch; pipe (t1 fs) ch out)

Type for pipe:

v 0475,P1,p23~
((« = a) 1ist) < (a chan (p; U{C})) - (o chan p,) > unit

where ¢ =
REC . (FORK,(REC 8".((p1 U{C})?; ¢; pala; B"))

+ a CHAN C; FORK(REC 8. ((p1 U{C}) 7o 85 Clas 81)); 3)
=\Vll AB

A VKR CENTRE OF EXCELLENCE

150 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional

Exercises

Determine the type and behaviour of the concurrent map
functions and the fan controller.

Epilogue

MT-LAB

A VKR CENTRE OF EXCELLENCE

151 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional

Theory: overview

Structural operational semantics for

e CML

@ behaviours
Subject Reduction Theorem:

@ types are preserved by CML-evaluation steps

@ steps in CML-semantics can be mimicked in behaviour semantics
The developments

@ simplified semantics: only input and output

@ complex semantics: also sync, receive and send

Epilogue

MT-LAB

A VKR CENTRE OF EXCELLENCE

152 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Sequential Semantics of CML
Evaluation in context:
(fax=>e)v — e[x — V]
let x=vine — e[x — V]
rec f x =>e — (fn x => e)[f — (rec f x => ¢)]
if true then ¢ else & — ¢
if false then ¢ else e — &

Vi Vo — V3 if(V]_, Vo, V3) €0

MT-LAB

A VKR CENTRE OF EXCELLENCE

153 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Sequential Semantics of CML

Evaluation in context:

(fax=>¢e)v — e[x — V]

let x=vine — e[x — V]

rec f x =>e — (fn x => e)[f — (rec f x => ¢)]
if true then e else & €1

if false then ¢ else & €

Vi W V3 if(V]_, Vo, V3) €0

Evaluation contexts:

w= []|Ee|lvE]|letx=FEine |if E then e else e

where

dIx|ftax=el|(c,vi) | | (c vayeny W)

153

MT AB

¢’ can be any constant except sync, channel and fork. CENTRE OF EXCELNCE

18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Concurrent Semantics of CML

CP, PP[pi — Ele]] = —,; CP, PP[pi — El[e]]

if €1 — €

CP, PP[pi — E[channel()]] = CHAN/C' CP U {ci}, PP[pi — E[ci]]
if ci ¢ CP

CP, PP[pi — E[fork, e]] :»E?RKTP"O
CP, PP[pi — E[O]][pio — e O]

if pip & dom(PP) U {pi}

Annotation of AZ,V

ev == ¢ | (c!,ci?) | CHAN, ci | FORK pi LIIT AB

154 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Semantics of communication

The simple case:

CP, PP[p; : El[?utput(m v)|][p2 : Ex[input c/]]
—bl ! CPPPlpy B[P - BolV])

if p1 # p2

A VKR CENTRE OF EXCELLENCE

155 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Semantics of communication

The simple case:

CP, PP[p; : El[?utput(m v)|][p2 : Ex[input c/]]
10 P PPy - E[V][p: ¢ B[]

if p1 # p2

More generally:
(cilyei?)

(v, v2) ~> (e, &)
[p1 — Ei[sync vi], po — Ex[sync vo]]

(cilyci?)

=55 [Eiled], po — Eoles]]
if p1 # p2

A VKR CENTRE OF EXCELLENCE

155 / 18

Abstract Grand View Ambients PI-Calculus Executive COows

Matching

((send(ci, v)), (receive ci))(dkii?) (v,v)

di,d
(V17 V3)(r{’g)(ela e2)
di,d
(Wrap(vl> V2)7 V3)(’1\22)(‘/2 €1, 6‘2)

Traditional Epilogue

plus rules for choose and swopping input and output

MT-LAB

A VKR CENTRE OF EXCELLENCE

156 / 18

CP, PP[pi — €] —ps CP', PP'[pi — €]

[[Fe:t&b

PB[pi ~ b]

A VKR CENTRE OF EXCELLENCE

Static Analysis of Services

157 / 18

CP, PP[pi — €] —ps CP', PP'[pi — €]

[[Fe:t&b

PB[pi ~ b]

[[Fe:t&b

A VKR CENTRE OF EXCELLENCE

Static Analysis of Services

157 / 18

CP, PP[pi — €] —ps CP', PP'[pi — €]

[[Fe:t&b

PB[pi ~ b]

;é
ps

[[Fe:t&b

PB'[pi — b"]

A VKR CENTRE OF EXCELLENCE

Static Analysis of Services

157 / 18

Abstract Grand View Ambients

PI-Calculus Executive COows Traditional Epilogue

Subject reduction theorem

[[Fe:t&b

PB[pi r— b]

CP, P,‘D[pi —e] —ps CP/, P,?’[pi — €]

;21
ps

[JFe t&b

b/ E b//

PB'[pi 1 b']

where 2 is 'the translation of ' ev

MT-1AB

A VKR CENTRE OF EXCELLENCE

157 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Semantics of behaviours: sequential

p=-"e =/
b=°b
b1:>pbi b1:>p\/

by; b2:>pbi; b, by by="rb,

plus rules for choice and recursion

Annotations of =P:
p == €| r't | r?t|t CHAN, | FORK;, b

MT-LAB

A VKR CENTRE OF EXCELLENCE

158 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Semantics of behaviours: concurrent

b=-2b
PBlpi — b]=—>2,PBpi b/

b1:>r[tbi b2:>r?tb£

. . . . if piy # piz
[pix = by, pia = by]="1"". [piy v by, pip — by
Annotations on =—?:
a == €| rlt?r
|t CHAN, | FORK, b
MT- AB

A VKR CENTRE OF EXCELLENCE

150 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Simulation on behaviours
S is a simulation on (closed) behaviours if
e /S bifandonlyif b=,/
@ if by="'b] and by S by then there exists b, and p, such that
— by=P2 b},
- p1 S? ps
— b, S b
where
8% ={(p,p) | p € {e, r't, r7t,t CHAN,}} U {(FORK, b,FORK, b') | b S b'}

Define & as the largest simulation.

Lemma: Soundness of Ordering
C is a simulation.

The ordering 5 is undecidable. MTAB

160 / 18

Abstract Grand View Ambients

PI-Calculus Executive COows Traditional Epilogue

Subject reduction theorem

[[Fe:t&b

PB[pi r— b]

CP, P,‘D[pi —e] —ps CP/, P,?’[pi — €]

;21
ps

[JFe t&b

b/ E b//

PB'[pi 1 b']

where 2 is 'the translation of ' ev

MT-1AB

A VKR CENTRE OF EXCELLENCE

161 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Algorithm

The algorithm is based on Milner's W
@ use unification for the types

@ collect constraints for the behaviours

Problem: Constraints need not have principal solutions:
incomparable solutions could be mixed.

Wi(e) = (s.d.C,5) where
s: simple type: only behaviour variables
d: simple behaviour: no REC behaviours
C: set of constraints
S: set of solution restrictions

MT-LAB

A VKR CENTRE OF EXCELLENCE

162 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional

Analysing behaviours

pipe fs in out:

FORK7r (REC 6.((r1 + ro)?t; €, (rg + I‘o)!t; ﬁ))
+ t CHAN,;
FORK, (REC B.((rn + r0)?t; b; (rn + ro)'t; 5));

Finite communication topology?
@ how many channels might be created?

@ how many processes might be created?

Epilogue

A VKR CENTRE OF EXCELLENCE

OF EXCELLENC

163 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional

Analysis for finite communication topology

Judgements: b : (no. of channels, no. of processes)

Definition:
-e:(0,0) Frit:(0,0) Ft?t:(0,0)
Fb:(n, m)
+ HAN, : (1
£ CHAN, : (1,0) - FORK,b : (n,m+ 1)
= b:(n,m)

= 3:(0,0) - REC 8.b: (n, m)

F bl . (I’ll7 ml) H b2 . (n2, m2)
l_ bl; b2 : (n1 + nyp, my —+ m2)
H bl . (I’ll, ml) H b2 . (I72, m2)
F by + by @ (max(ny, na), max(my, my))

provided that ...

provided that ...

Epilogue

provided that MT.- AB

164 / 18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Examples: Do we have a finite communication
topology?

@ REC 4.t CHAN, + (r't;)

@ REC 5.r7t + (t CHAN,:)

© REC 3.t CHAN, + (r't; 5; B)

@ REC B.e+ (r!t; 8;8)

@ REC f.t CHAN, + FORK,(r!t; §)

MT-LAB

A VKR CENTRE OF EXCELLENCE

165 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Exercise

Determine whether or not the concurrent map functions and
the fan controller have a finite communication topology.

MT-LAB

A VKR CENTRE OF EXCELLENCE

166 / 18

Abstract Grand View Ambients Pl-Calculus Executive cows Traditional Epilogue

Analysing behaviours

pipe fs in out:

FORK, (REC B.((rn + ro)?t; ¢; (2 + ro)'t; B))
+ t CHAN,;
FORK, (REC B.((rn + rn)?t; b; (rn+ r)'t; 5));

Static processor allocation: Assume that all instances of
processes labelled 7 will be running on the same processor -
which requirements does this put on the processor?

@ how many channels labelled r might be created?
@ how many processes labelled m might be created?

@ how many times might a channel labelled r be used for

input/output?
putfoutp MT- A5

OF EXCELLENC

167 / 18

Abstract Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Analysing behaviours

pipe fs in out:

FORK,T (REC ﬁ.((rl -+ ro)?t; €; (r2 + I’o)!t; ﬁ))
+ t CHAN,;
FORK, (REC B.((rn + r0)?t; b; (rn + ro)'t; 5));

Dynamic processor allocation: Which requirements does this
put on the processor?

@ how many channels labelled r might be created?
@ how many processes labelled 7 might be created?

@ how many times might a channel labelled r be used for
input/output?
MT-1AB

OF EXCELLENC

168 / 18

Abstract

Grand View Ambients Pl-Calculus Executive ~ COWS Traditional Epilogue

Suggested Reading (1)

@ T. Amtoft, H. Riis Nielson, F. Nielson: Behavior Analysis for
Validating Communication Patterns. In Journal on Software Tools
for Technology Transfer, vol.2, pages 13-28, Springer, 1998.

Gives an overview of the development and of a computer system for
carrying out the analysis.

@ H. Riis Nielson and F. Nielson: Communication Analysis for
Concurrent ML. In ML with Concurrency. Monographs in
Computer Science, pages 185-235, Springer, 1997.

MT-LAB

A VKR CENTRE OF EXCELLENCE

169 /

18

Abstract Grand View Ambients PI-Calculus Executive cows Traditional Epilogue

Suggested Reading (2)

@ F. Nielson and H. Riis Nielson: From CML to its Process Algebra.
Theoretical Computer Science, vol. 155, pages 179-219, 1996.

@ T. Amtoft, F. Nielson, H. Riis Nielson: Type and Effect Systems:
Behaviours for Concurrency. Imperial College Press, 1999.

This book contains the full development.

@ H. Riis Nielson, F. Nielson: Static and Dynamic Processor

Allocation for Higher-Order Concurrent Languages. TAPSOFT'95,
LNCS 915.

MT-LAB

A VKR CENTRE OF EXCELLENCE

170 / 18

	Abstract
	Grand View
	Ambients
	Syntax and Semantics
	Static Analysis
	Flow Logic
	Properties of the analysis
	Suggested reading

	PI-Calculus
	Syntax and Semantics
	Flow Logic
	Properties of the analysis
	Interaction points
	Tests and local environments
	Suggested Reading

	Executive
	Suggested Reading

	COWS
	Syntax and Semantics
	Flow Logic
	Properties of the analysis
	Suggested Reading

	Behaviours
	Syntax of CML
	Types and Behaviour
	The type system
	Semantics of CML
	Semantics of behaviours
	Theorem
	Analysing behaviours
	Suggested Reading

	Traditional
	Suggested Reading

	Epilogue

