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The Grand View

Recall what we are doing:

Programming Languages

Process Calculi

Properties of Interest
?

?

?

(1) Part 6:

Flow Logic

for CML

(2a) Part 5: From CML to Behaviours

(2b) Parts 1-4: Flow Logic for Process Calculi

Mobile Ambients, π-calculus, COWS
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Motivation

Concurrent ML

functions and synchronous operations are first class values

typed channels and processes are created dynamically

Behaviours

express the overall communication actions performed

can serve both as a description of concrete behaviour and as a
specification of intended behaviour

Type and Effect Systems

facilitates extracting behaviours from programs
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Syntax of CML subset

Expressions
e ::= c | x | fn x => e | e1 e2

| let x = e1 in e2

| rec f x => e

| if e then e1 else e2

Constants:
c ::= () | true | false | n | pair | fst | snd

| nil | cons | hd | tl | isnil | + | * | = | · · ·
| send | receive | sync
| forkπ | channell | choose | wrap

Shorthands:
input e = sync (receive e)

output e = sync (send e)
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Example: the pipe function

pipe [f1, f2, f3] inp out

f1

f2

f3

id

?

?

?

?

?

inp

out
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Example: the pipe function

let node =

fn f => fn inp => fn out =>

forkπ (rec loop d => let v = input inp

in output (out, f v);

loop d)

in rec pipe fs => fn inp => fn out =>

if isnil fs

then node (fn x => x) inp out

else let ch = channelr0 ()

in (node (hd fs) inp ch;

pipe (tl fs) ch out)
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The CML primitives

forkπ e spawns a process computing e ()

channell () creates a new channel

sync, receive and choose do not perform the operations -
they produce delayed communications (also called events).
sync will activate the communications:

sync (send (ch,v)): sends the value v on the channel ch

sync (receive ch): receives a value on the channel ch

sync (choose [e1, · · · , en]): chooses between a list of
communication possibilities

sync (wrap (e1, e2)) is “similar” to e2(sync e1)
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Example: Adding the possibility of failure

pipe [f1, f2, f3] inp out

f1

f2

f3

id

?

?

?

?

?

-

-

-

-

inp

out

fail
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Example: Adding the possibility of failure

let node =

fn f => fn inp => fn out =>

forkπ (rec loop d =>

sync (choose

[wrap (receive inp,

fn x => sync (send (out, f x));

loop d),

send(fail,())]))

in rec pipe fs => fn inp => fn out =>

if isnil fs

then node (fn x => x) inp out

else let ch = channelr0 ()

in (node (hd fs) inp ch;

pipe (tl fs) ch out)

128 / 180

Static Analysis of Services



Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The map function

rec map f => fn xs =>

if isnil xs then nil

else cons(f (hd xs))(map f (tl xs))

Exercise:
A concurrent version?
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Controlling a fan
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Controlling a fan

In Concurrent ML:

let therm = channellt ();

fan = channellf ();

temp = channell1 ();

cool = channell2 ()

in forkπ1 (... sensor ...);

forkπ2 (... control ...);

forkπ3 (... cooling ...)
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Controlling a fan

rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,

fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),

fn d => sensor (t1,t2))])

rec control d =>
let t = sync (receive temp)
in ((if t > upper then sync (send(cool,‘‘On’’))

else if t < lower then sync (send(cool,‘‘Off’’))
else ‘‘Ok’’); control d)

rec cooling state =>
let new = sync (receive cool)
in if new = state then cooling state

else (sync (send(fan, new)); cooling new)
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Typing system

Behaviours:
b ::= ε | r !t | r?t | t CHANr

| FORKπ b | b1;b2 | b1+b2

| RECβ.b | β

Types:
t ::= unit | bool | int | α

| t1 →b t2 | t1 × t2 | t list

| t chan r | t com b

Regions:
r ::= l | r1 + r2 (sets of labels)

| ρ

Type schemes:
ts ::= t | ∀β.ts | ∀α.ts | ∀ρ.ts
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Example: the pipe function (again)

let node =

fn f => fn inp => fn out =>

forkπ (rec loop d => let v = input inp

in output (out, f v);

loop d)

in rec pipe fs => fn inp => fn out =>

if isnil fs

then node (fn x => x) inp out

else let ch = channelr0 ()

in (node (hd fs) inp ch;

pipe (tl fs) ch out)
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Example: behaviour for node

Assumptions:
f : t1 →b t2

inp : t1 chan r1
out : t2 chan r2

node f inp out: FORKπ (REC β. (r1?t1; b; r2!t2; β))

Fork a process that will

- read a value of type t1 on a channel in r1
- do the computation f with behaviour b

- write a value of type t2 on a channel in r2, and

- recurse
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Example: behaviour for pipe

Assumptions:
fs : (t →b t) list

inp : t chan r1
out : t chan r2

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β));
β′)

- fork a process that . . . or

- allocate a new channel in r0,

- fork a process that . . . and

- recurse
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Example: Adding failure (again)

let node =

fn f => fn inp => fn out =>

forkπ (rec loop d =>

sync (choose

[wrap (receive inp,

fn x => sync (send (out, f x));

loop d),

send(fail,())]))

in rec pipe fs => fn inp => fn out =>

if isnil fs

then node (fn x => x) inp out

else let ch = channelr0 ()

in (node (hd fs) inp ch;

pipe (tl fs) ch out)
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Example: behaviour for node

Assumptions:
f : t1 →b t2

fail : unit chan r0
inp : t1 chan r1
out : t2 chan r2

node f inp out:

FORKπ (REC β. (r1?t1; b; r2!t2; β + r0!unit))

Fork a process that will

- read a value of type t1 on a channel in r1
- do the computation f with behaviour b

- write a value of type t2 on a channel in r2, and

- recurse

or

- write a value of type unit on a channel in r0, and

- terminate
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Example: behaviour for pipe

Assumptions:
fs : (t →b t) list

fail : unit chan r0
inp : t chan r1
out : t chan r2

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β + r0!unit))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β + r0!unit));
β′)

- fork a process that . . . or

- allocate a new channel in r0,

- fork a process that . . . and

- recurse
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Exercises

Determine the behaviour of the concurrent map functions
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Types for constants: TypeOf(c)

send ∀α, ρ. (α chan ρ)× α →ε (α com ρ!α)

receive ∀α, ρ. (α chan ρ) →ε (α com ρ?α)

sync ∀α, β. (α com β) →β α

forkπ ∀α, β. (unit→β α) →FORKπ β unit

channell ∀α. unit→α CHANl (α chan l)

choose ∀α, β. (α com β) list →ε (α com β)

wrap ∀α1, α2, β1, β2.(α1 com β1)× (α1 →β2 α2)
→ε (α2 com β1; β2)

input ∀α, ρ. (α chan ρ) →ρ?α α
output ∀α, ρ. (α chan ρ)× α →ρ!α α
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type environment ` e : type & behaviour

tenv ` c : t & ε if TypeOf(c) � t

tenv [x 7→ ts] ` x : t & ε if ts � t

tenv [x 7→ t] ` e : t ′ & b

tenv ` fn x ⇒ e : t →b t ′ & ε

tenv ` e1 : t →b t ′ & b1 tenv ` e2 : t & b2

tenv ` e1 e2 : t ′ & b1; b2; b

tenv ` e1 : t1 & b1 tenv [x 7→ ts] ` e2 : t2 & b2

tenv ` let x=e1 in e2 : t2 & b1; b2

if ts = gen(tenv ,b1)t1
Exercise:
Add the inference rules for recursion and conditions.
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A design decision

Early subsumption – or subtyping

Coercions between types can happen at any time inside any type

add the subtyping rule:

tenv ` e : t & b

tenv ` e : t′ & b′
if t v t′ and b v b′

Late subsumption – or subeffecting

Generic instantion produce the required instances.

In TypeOf(c) we shall use constrained type schemas as
∀β : t1 →β t2 [β ≥ b] in stead of t1 →b t2

add the subeffect rule:

tenv ` e : t & b

tenv ` e : t & b′
if b v b′
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Constraint type schemas: TypeOf(c)

send ∀α, ρ, β1, β2. (α chan ρ)× α→β1 (α comβ2)[ε ≤ β1, ρ!α ≤ β2]

receive ∀α, ρ, β1, β2. (α chan ρ) →β1 (α com β2)[ε ≤ β1, ρ?α ≤ β2]

sync ∀α, β1, β2. (α com β1) →β2 α[β1 ≤ β2]

forkπ ∀α, β1, β2. (unit→β1 α) →β2 unit[FORKπ β1 ≤ β2]

channell ∀α, β, ρ. unit→β (α chan l)[α CHANρ ≤ β, l ≤ ρ]

choose ∀α, β1, β2, β3. (α comβ1) list →β2 (α com β3)[ε ≤ β2, β1 ≤ β3]

wrap ∀α1, α2, β1, β2, β3, β4. (α1 comβ1)× (α1 →β2 α2)
→β3 (α2 com β4)[ε ≤ β3, β1;β2 ≤ β4]
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Generalisation and instantiation
Generalisation

gen(tenv , b)t = let ᾱβ̄ρ̄ = FV (t) \ (FV (tenv) ∪ FV (b))
in ∀ᾱβ̄ρ̄.t

Instantiation

∀ᾱβ̄ρ̄.t[C ] � t ′

where C is a (possible empty) set of constraints of the form
β ≥ b and ρ ≥ r
There exists a substitution θ with DOM(θ) = {ᾱβ̄ρ̄} such
that

θt = t ′ and

all the constraints of C are satisfied, that is,

θβ w θb for all β ≥ b in C , and
θρ ⊇ θr for all ρ ≥ r in C .
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Ordering on behaviours
Axioms and rules that formally state:

v is a pre-order

v is a pre-congruence

sequencing ; is associative

sequencing distributes over join

(b1 + b2); b3 v b1; b3 + b2; b3

b1; b3 + b2; b3 v (b1 + b2); b3

ε is left and right identity for sequencing

join + is least upper bound operation

recursion can be unfolded

REC β.b v b[β 7→ REC β.b]

b[β 7→ REC β.b] v REC β.b
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Example (1)

let node = fn f => fn inp => fn out =>
forkπ ((rec loop d => let v = input inp

in output (out, f v); loop d) ())
in · · ·

Type for node:

∀ α1, α2, β, ρ1, ρ2. (α1
β→ α2)︸ ︷︷ ︸
f

ε→ (α1 chan ρ1)︸ ︷︷ ︸
inp

ε→ (α2 chan ρ2)︸ ︷︷ ︸
out

ϕ→ unit

where ϕ = FORKπ(REC β′. (ρ1?α1; β; ρ2!α2; β
′))
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Example (2)

let node = · · ·
in rec pipe fs => fn inp => fn out =>

if isnil fs then node (fn x => x) inp out
else let ch = channelC ()

in (node (hd fs) inp ch; pipe (tl fs) ch out)

Type for pipe:

∀ α, β, ρ1, ρ2.

((α
β→ α) list)︸ ︷︷ ︸
fs

ε→ (α chan (ρ1 ∪ {C}))︸ ︷︷ ︸
inp, ch

ε→ (α chan ρ2)︸ ︷︷ ︸
out

ϕ→ unit

where ϕ =
REC β′. (FORKπ(REC β′′.((ρ1 ∪ {C})?α; ε; ρ2!α; β′′))︸ ︷︷ ︸

node (fn x => x) ...
+ α CHAN C; FORKπ(REC β′′. ((ρ1 ∪ {C})?α; β; C!α;β′′))︸ ︷︷ ︸

node (hd fs) ...

; β′)
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Exercises

Determine the type and behaviour of the concurrent map
functions and the fan controller.
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Theory: overview

Structural operational semantics for

CML

behaviours

Subject Reduction Theorem:

types are preserved by CML-evaluation steps

steps in CML-semantics can be mimicked in behaviour semantics

The developments

simplified semantics: only input and output

complex semantics: also sync, receive and send
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Sequential Semantics of CML

Evaluation in context:

(fn x => e) v → e[x 7→ v ]

let x = v in e → e[x 7→ v ]

rec f x => e → (fn x => e)[f 7→ (rec f x => e)]

if true then e1 else e2 → e1

if false then e1 else e2 → e2

v1 v2 → v3 if(v1, v2, v3) ∈ δ

Evaluation contexts:

E ::= [ ] | E e | v E | let x = E in e | if E then e1 else e2

v ::= c ′ | x | fn x ⇒ e | (c ′, v1) | · · · | (c ′, v1, . . . , vk)

where c ′ can be any constant except sync, channel and fork.
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Concurrent Semantics of CML

CP , PP[pi 7→ E [e1]] ⇒ε
pi CP , PP[pi 7→ E [e2]]

if e1 → e2

CP , PP[pi 7→ E [channell()]] ⇒CHANlci
pi CP ∪ {ci}, PP[pi 7→ E [ci ]]

if ci 6∈ CP

CP , PP[pi 7→ E [forkπ e0]] ⇒FORKπpi0
pi

CP , PP[pi 7→ E [()]][pi0 7→ e0 ()]

if pi0 6∈ dom(PP) ∪ {pi}

Annotation of ⇒ev
pi :

ev ::= ε | (ci !, ci?) | CHANr ci | FORKπ pi
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Semantics of communication

The simple case:

CP , PP[p1 : E1[output(ci, v)]][p2 : E2[input ci ]]

⇒(ci!,ci?)
p1,p2 CP , PP[p1 : E1[v ]][p2 : E2[v ]]

if p1 6= p2

More generally:

(v1, v2)
(ci!,ci?)

; (e1, e2)

[p1 7→ E1[sync v1], p2 7→ E2[sync v2]]

⇒(ci!,ci?)
p1,p2 [p1 7→ E1[e1], p2 7→ E2[e2]]

if p1 6= p2
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Matching

((send(ci , v)), (receive ci))
(ci!,ci?)

; (v , v)

(v1, v3)
(d1,d2)
; (e1, e2)

(wrap(v1, v2), v3)
(d1,d2)
; (v2 e1, e2)

plus rules for choose and swopping input and output
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Subject reduction theorem

CP , PP[pi 7→ e]
6

[ ] ` e : t & b

?
PB[pi 7→ b]

−→ev
ps

=⇒â
ps

CP ′, PP ′[pi 7→ e ′]

6

[ ] ` e ′ : t & b′

?
PB ′[pi 7→ b′′]

b′ v b′′

where a is ’the translation of’ ev
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Semantics of behaviours: sequential

p⇒pε ε⇒ε
√

b⇒εb

b1⇒pb′1
b1; b2⇒pb′1; b2

b1⇒p
√

b1; b2⇒pb2

plus rules for choice and recursion

Annotations of ⇒p:

p ::= ε | r !t | r?t | t CHANr | FORKπ b
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Semantics of behaviours: concurrent

b⇒ab′

PB[pi 7→ b]=⇒a
piPB[pi 7→ b′

b1⇒r !tb′1 b2⇒r?tb′2
[pi1 7→ b1, pi2 7→ b2]=⇒r !t?r

pi1,pi2
[pi1 7→ b′1, pi2 7→ b′2]

if pi1 6= pi2

Annotations on =⇒a:
a ::= ε | r !t?r

| t CHANr | FORKπ b
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Simulation on behaviours
S is a simulation on (closed) behaviours if

√
S b if and only if b =

√

if b1⇒p1b′1 and b1 S b2 then there exists b2 and p2 such that

− b2⇒bp2b′2,

− p1 S∂ p2

− b′1 S b′2.

where
S∂ = {(p, p) | p ∈ {ε, r !t, r?t, t CHANr}} ∪ {(FORKπ b, FORKπ b′) | b S b′}

Define <∼ as the largest simulation.

Lemma: Soundness of Ordering

v is a simulation.

The ordering <∼ is undecidable.
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Subject reduction theorem

CP , PP[pi 7→ e]
6

[ ] ` e : t & b

?
PB[pi 7→ b]

−→ev
ps

=⇒â
ps

CP ′, PP ′[pi 7→ e ′]
6

[ ] ` e ′ : t & b′

?
PB ′[pi 7→ b′′]

b′ v b′′

where a is ’the translation of’ ev
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Algorithm

The algorithm is based on Milner’s W
use unification for the types

collect constraints for the behaviours

Problem: Constraints need not have principal solutions:
incomparable solutions could be mixed.

W(e) = (s, d , C , S) where

s: simple type: only behaviour variables

d : simple behaviour: no REC behaviours

C : set of constraints

S : set of solution restrictions
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Analysing behaviours

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β));
β′)

Finite communication topology?

how many channels might be created?

how many processes might be created?

163 / 180

Static Analysis of Services



Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis for finite communication topology

Judgements: ` b : (no. of channels, no. of processes)

Definition:

` ε : (0, 0) ` r !t : (0, 0) ` t?t : (0, 0)

` t CHANr : (1, 0)
` b : (n, m)

` FORKπb : (n, m + 1)

` β : (0, 0)
` b : (n, m)

` REC β.b : (n, m)
provided that ...

` b1 : (n1, m1) ` b2 : (n2, m2)

` b1; b2 : (n1 + n2, m1 + m2)
provided that ...

` b1 : (n1, m1) ` b2 : (n2, m2)

` b1 + b2 : (max(n1, n2), max(m1, m2))
provided that ...
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Examples: Do we have a finite communication
topology?

1 REC β.t CHANr + (r !t;β)

2 REC β.r?t + (t CHANr ;β)

3 REC β.t CHANr + (r !t;β;β)

4 REC β.ε+ (r !t;β;β)

5 REC β.t CHANr + FORKπ(r !t;β)

165 / 180

Static Analysis of Services



Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Exercise

Determine whether or not the concurrent map functions and
the fan controller have a finite communication topology.
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Analysing behaviours

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β));
β′)

Static processor allocation: Assume that all instances of
processes labelled π will be running on the same processor -
which requirements does this put on the processor?

how many channels labelled r might be created?

how many processes labelled π might be created?

how many times might a channel labelled r be used for
input/output?
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Analysing behaviours

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β));
β′)

Dynamic processor allocation: Which requirements does this
put on the processor?

how many channels labelled r might be created?

how many processes labelled π might be created?

how many times might a channel labelled r be used for
input/output?
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Suggested Reading (1)

T. Amtoft, H. Riis Nielson, F. Nielson: Behavior Analysis for
Validating Communication Patterns. In Journal on Software Tools
for Technology Transfer, vol.2, pages 13-28, Springer, 1998.

Gives an overview of the development and of a computer system for
carrying out the analysis.

H. Riis Nielson and F. Nielson: Communication Analysis for
Concurrent ML. In ML with Concurrency. Monographs in
Computer Science, pages 185-235, Springer, 1997.
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Suggested Reading (2)

F. Nielson and H. Riis Nielson: From CML to its Process Algebra.
Theoretical Computer Science, vol. 155, pages 179-219, 1996.

T. Amtoft, F. Nielson, H. Riis Nielson: Type and Effect Systems:
Behaviours for Concurrency. Imperial College Press, 1999.

This book contains the full development.

H. Riis Nielson, F. Nielson: Static and Dynamic Processor
Allocation for Higher-Order Concurrent Languages. TAPSOFT’95,
LNCS 915.
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