
Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Flemming Nielson and Hanne Riis Nielson

Technical University of Denmark

Types At Work, 2009

1 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Static Analysis of Services

Part 5:

Extracting Process Calculus from Concurrent ML

120 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The Grand View

Recall what we are doing:

Programming Languages

Process Calculi

Properties of Interest
?

?

?

(1) Part 6:

Flow Logic

for CML

(2a) Part 5: From CML to Behaviours

(2b) Parts 1-4: Flow Logic for Process Calculi

Mobile Ambients, π-calculus, COWS

121 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Motivation

Concurrent ML

functions and synchronous operations are first class values

typed channels and processes are created dynamically

Behaviours

express the overall communication actions performed

can serve both as a description of concrete behaviour and as a
specification of intended behaviour

Type and Effect Systems

facilitates extracting behaviours from programs

122 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Syntax of CML subset

Expressions
e ::= c | x | fn x => e | e1 e2

| let x = e1 in e2

| rec f x => e

| if e then e1 else e2

Constants:
c ::= () | true | false | n | pair | fst | snd

| nil | cons | hd | tl | isnil | + | * | = | · · ·
| send | receive | sync
| forkπ | channell | choose | wrap

Shorthands:
input e = sync (receive e)

output e = sync (send e)

123 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: the pipe function

pipe [f1, f2, f3] inp out

f1

f2

f3

id

?

?

?

?

?

inp

out

124 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: the pipe function

let node =

fn f => fn inp => fn out =>

forkπ (rec loop d => let v = input inp

in output (out, f v);

loop d)

in rec pipe fs => fn inp => fn out =>

if isnil fs

then node (fn x => x) inp out

else let ch = channelr0 ()

in (node (hd fs) inp ch;

pipe (tl fs) ch out)

125 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The CML primitives

forkπ e spawns a process computing e ()

channell () creates a new channel

sync, receive and choose do not perform the operations -
they produce delayed communications (also called events).
sync will activate the communications:

sync (send (ch,v)): sends the value v on the channel ch

sync (receive ch): receives a value on the channel ch

sync (choose [e1, · · · , en]): chooses between a list of
communication possibilities

sync (wrap (e1, e2)) is “similar” to e2(sync e1)

126 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: Adding the possibility of failure

pipe [f1, f2, f3] inp out

f1

f2

f3

id

?

?

?

?

?

-

-

-

-

inp

out

fail

127 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: Adding the possibility of failure

let node =

fn f => fn inp => fn out =>

forkπ (rec loop d =>

sync (choose

[wrap (receive inp,

fn x => sync (send (out, f x));

loop d),

send(fail,())]))

in rec pipe fs => fn inp => fn out =>

if isnil fs

then node (fn x => x) inp out

else let ch = channelr0 ()

in (node (hd fs) inp ch;

pipe (tl fs) ch out)

128 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

The map function

rec map f => fn xs =>

if isnil xs then nil

else cons(f (hd xs))(map f (tl xs))

Exercise:
A concurrent version?

129 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Controlling a fan

132 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Controlling a fan

In Concurrent ML:

let therm = channellt ();

fan = channellf ();

temp = channell1 ();

cool = channell2 ()

in forkπ1 (... sensor ...);

forkπ2 (... control ...);

forkπ3 (... cooling ...)

133 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Controlling a fan

rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,

fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),

fn d => sensor (t1,t2))])

rec control d =>
let t = sync (receive temp)
in ((if t > upper then sync (send(cool,‘‘On’’))

else if t < lower then sync (send(cool,‘‘Off’’))
else ‘‘Ok’’); control d)

rec cooling state =>
let new = sync (receive cool)
in if new = state then cooling state

else (sync (send(fan, new)); cooling new)

134 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Controlling a fan

rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,

fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),

fn d => sensor (t1,t2))])
rec control d =>

let t = sync (receive temp)
in ((if t > upper then sync (send(cool,‘‘On’’))

else if t < lower then sync (send(cool,‘‘Off’’))
else ‘‘Ok’’); control d)

rec cooling state =>
let new = sync (receive cool)
in if new = state then cooling state

else (sync (send(fan, new)); cooling new)

134 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Controlling a fan

rec sensor (t1,t2) =>
sync (choose [wrap (receive therm,

fn t => sensor(t2,t)),
wrap (send (temp, (t1+t2)/2),

fn d => sensor (t1,t2))])
rec control d =>

let t = sync (receive temp)
in ((if t > upper then sync (send(cool,‘‘On’’))

else if t < lower then sync (send(cool,‘‘Off’’))
else ‘‘Ok’’); control d)

rec cooling state =>
let new = sync (receive cool)
in if new = state then cooling state

else (sync (send(fan, new)); cooling new)

134 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Typing system

Behaviours:
b ::= ε | r !t | r?t | t CHANr

| FORKπ b | b1;b2 | b1+b2

| RECβ.b | β

Types:
t ::= unit | bool | int | α

| t1 →b t2 | t1 × t2 | t list

| t chan r | t com b

Regions:
r ::= l | r1 + r2 (sets of labels)

| ρ

Type schemes:
ts ::= t | ∀β.ts | ∀α.ts | ∀ρ.ts

135 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: the pipe function (again)

let node =

fn f => fn inp => fn out =>

forkπ (rec loop d => let v = input inp

in output (out, f v);

loop d)

in rec pipe fs => fn inp => fn out =>

if isnil fs

then node (fn x => x) inp out

else let ch = channelr0 ()

in (node (hd fs) inp ch;

pipe (tl fs) ch out)

136 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: behaviour for node

Assumptions:
f : t1 →b t2

inp : t1 chan r1
out : t2 chan r2

node f inp out: FORKπ (REC β. (r1?t1; b; r2!t2; β))

Fork a process that will

- read a value of type t1 on a channel in r1
- do the computation f with behaviour b

- write a value of type t2 on a channel in r2, and

- recurse

137 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: behaviour for pipe

Assumptions:
fs : (t →b t) list

inp : t chan r1
out : t chan r2

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β));
β′)

- fork a process that . . . or

- allocate a new channel in r0,

- fork a process that . . . and

- recurse

138 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: Adding failure (again)

let node =

fn f => fn inp => fn out =>

forkπ (rec loop d =>

sync (choose

[wrap (receive inp,

fn x => sync (send (out, f x));

loop d),

send(fail,())]))

in rec pipe fs => fn inp => fn out =>

if isnil fs

then node (fn x => x) inp out

else let ch = channelr0 ()

in (node (hd fs) inp ch;

pipe (tl fs) ch out)

139 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: behaviour for node

Assumptions:
f : t1 →b t2

fail : unit chan r0
inp : t1 chan r1
out : t2 chan r2

node f inp out:

FORKπ (REC β. (r1?t1; b; r2!t2; β + r0!unit))

Fork a process that will

- read a value of type t1 on a channel in r1
- do the computation f with behaviour b

- write a value of type t2 on a channel in r2, and

- recurse

or

- write a value of type unit on a channel in r0, and

- terminate

140 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example: behaviour for pipe

Assumptions:
fs : (t →b t) list

fail : unit chan r0
inp : t chan r1
out : t chan r2

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β + r0!unit))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β + r0!unit));
β′)

- fork a process that . . . or

- allocate a new channel in r0,

- fork a process that . . . and

- recurse

141 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Exercises

Determine the behaviour of the concurrent map functions

142 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Types for constants: TypeOf(c)

send ∀α, ρ. (α chan ρ)× α →ε (α com ρ!α)

receive ∀α, ρ. (α chan ρ) →ε (α com ρ?α)

sync ∀α, β. (α com β) →β α

forkπ ∀α, β. (unit→β α) →FORKπ β unit

channell ∀α. unit→α CHANl (α chan l)

choose ∀α, β. (α com β) list →ε (α com β)

wrap ∀α1, α2, β1, β2.(α1 com β1)× (α1 →β2 α2)
→ε (α2 com β1; β2)

input ∀α, ρ. (α chan ρ) →ρ?α α
output ∀α, ρ. (α chan ρ)× α →ρ!α α

143 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

type environment ` e : type & behaviour

tenv ` c : t & ε if TypeOf(c) � t

tenv [x 7→ ts] ` x : t & ε if ts � t

tenv [x 7→ t] ` e : t ′ & b

tenv ` fn x ⇒ e : t →b t ′ & ε

tenv ` e1 : t →b t ′ & b1 tenv ` e2 : t & b2

tenv ` e1 e2 : t ′ & b1; b2; b

tenv ` e1 : t1 & b1 tenv [x 7→ ts] ` e2 : t2 & b2

tenv ` let x=e1 in e2 : t2 & b1; b2

if ts = gen(tenv ,b1)t1
Exercise:
Add the inference rules for recursion and conditions.

144 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

A design decision

Early subsumption – or subtyping

Coercions between types can happen at any time inside any type

add the subtyping rule:

tenv ` e : t & b

tenv ` e : t′ & b′
if t v t′ and b v b′

Late subsumption – or subeffecting

Generic instantion produce the required instances.

In TypeOf(c) we shall use constrained type schemas as
∀β : t1 →β t2 [β ≥ b] in stead of t1 →b t2

add the subeffect rule:

tenv ` e : t & b

tenv ` e : t & b′
if b v b′

145 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Constraint type schemas: TypeOf(c)

send ∀α, ρ, β1, β2. (α chan ρ)× α→β1 (α comβ2)[ε ≤ β1, ρ!α ≤ β2]

receive ∀α, ρ, β1, β2. (α chan ρ) →β1 (α com β2)[ε ≤ β1, ρ?α ≤ β2]

sync ∀α, β1, β2. (α com β1) →β2 α[β1 ≤ β2]

forkπ ∀α, β1, β2. (unit→β1 α) →β2 unit[FORKπ β1 ≤ β2]

channell ∀α, β, ρ. unit→β (α chan l)[α CHANρ ≤ β, l ≤ ρ]

choose ∀α, β1, β2, β3. (α comβ1) list →β2 (α com β3)[ε ≤ β2, β1 ≤ β3]

wrap ∀α1, α2, β1, β2, β3, β4. (α1 comβ1)× (α1 →β2 α2)
→β3 (α2 com β4)[ε ≤ β3, β1;β2 ≤ β4]

146 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Generalisation and instantiation
Generalisation

gen(tenv , b)t = let ᾱβ̄ρ̄ = FV (t) \ (FV (tenv) ∪ FV (b))
in ∀ᾱβ̄ρ̄.t

Instantiation

∀ᾱβ̄ρ̄.t[C] � t ′

where C is a (possible empty) set of constraints of the form
β ≥ b and ρ ≥ r
There exists a substitution θ with DOM(θ) = {ᾱβ̄ρ̄} such
that

θt = t ′ and

all the constraints of C are satisfied, that is,

θβ w θb for all β ≥ b in C , and
θρ ⊇ θr for all ρ ≥ r in C .

147 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Generalisation and instantiation
Generalisation

gen(tenv , b)t = let ᾱβ̄ρ̄ = FV (t) \ (FV (tenv) ∪ FV (b))
in ∀ᾱβ̄ρ̄.t

Instantiation

∀ᾱβ̄ρ̄.t[C] � t ′

where C is a (possible empty) set of constraints of the form
β ≥ b and ρ ≥ r
There exists a substitution θ with DOM(θ) = {ᾱβ̄ρ̄} such
that

θt = t ′ and

all the constraints of C are satisfied, that is,

θβ w θb for all β ≥ b in C , and
θρ ⊇ θr for all ρ ≥ r in C .

147 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Ordering on behaviours
Axioms and rules that formally state:

v is a pre-order

v is a pre-congruence

sequencing ; is associative

sequencing distributes over join

(b1 + b2); b3 v b1; b3 + b2; b3

b1; b3 + b2; b3 v (b1 + b2); b3

ε is left and right identity for sequencing

join + is least upper bound operation

recursion can be unfolded

REC β.b v b[β 7→ REC β.b]

b[β 7→ REC β.b] v REC β.b

148 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example (1)

let node = fn f => fn inp => fn out =>
forkπ ((rec loop d => let v = input inp

in output (out, f v); loop d) ())
in · · ·

Type for node:

∀ α1, α2, β, ρ1, ρ2. (α1
β→ α2)︸ ︷︷ ︸
f

ε→ (α1 chan ρ1)︸ ︷︷ ︸
inp

ε→ (α2 chan ρ2)︸ ︷︷ ︸
out

ϕ→ unit

where ϕ = FORKπ(REC β′. (ρ1?α1; β; ρ2!α2; β
′))

149 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Example (2)

let node = · · ·
in rec pipe fs => fn inp => fn out =>

if isnil fs then node (fn x => x) inp out
else let ch = channelC ()

in (node (hd fs) inp ch; pipe (tl fs) ch out)

Type for pipe:

∀ α, β, ρ1, ρ2.

((α
β→ α) list)︸ ︷︷ ︸
fs

ε→ (α chan (ρ1 ∪ {C}))︸ ︷︷ ︸
inp, ch

ε→ (α chan ρ2)︸ ︷︷ ︸
out

ϕ→ unit

where ϕ =
REC β′. (FORKπ(REC β′′.((ρ1 ∪ {C})?α; ε; ρ2!α; β′′))︸ ︷︷ ︸

node (fn x => x) ...
+ α CHAN C; FORKπ(REC β′′. ((ρ1 ∪ {C})?α; β; C!α;β′′))︸ ︷︷ ︸

node (hd fs) ...

; β′)

150 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Exercises

Determine the type and behaviour of the concurrent map
functions and the fan controller.

151 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Theory: overview

Structural operational semantics for

CML

behaviours

Subject Reduction Theorem:

types are preserved by CML-evaluation steps

steps in CML-semantics can be mimicked in behaviour semantics

The developments

simplified semantics: only input and output

complex semantics: also sync, receive and send

152 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Sequential Semantics of CML

Evaluation in context:

(fn x => e) v → e[x 7→ v]

let x = v in e → e[x 7→ v]

rec f x => e → (fn x => e)[f 7→ (rec f x => e)]

if true then e1 else e2 → e1

if false then e1 else e2 → e2

v1 v2 → v3 if(v1, v2, v3) ∈ δ

Evaluation contexts:

E ::= [] | E e | v E | let x = E in e | if E then e1 else e2

v ::= c ′ | x | fn x ⇒ e | (c ′, v1) | · · · | (c ′, v1, . . . , vk)

where c ′ can be any constant except sync, channel and fork.

153 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Sequential Semantics of CML

Evaluation in context:

(fn x => e) v → e[x 7→ v]

let x = v in e → e[x 7→ v]

rec f x => e → (fn x => e)[f 7→ (rec f x => e)]

if true then e1 else e2 → e1

if false then e1 else e2 → e2

v1 v2 → v3 if(v1, v2, v3) ∈ δ

Evaluation contexts:

E ::= [] | E e | v E | let x = E in e | if E then e1 else e2

v ::= c ′ | x | fn x ⇒ e | (c ′, v1) | · · · | (c ′, v1, . . . , vk)

where c ′ can be any constant except sync, channel and fork.

153 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Concurrent Semantics of CML

CP , PP[pi 7→ E [e1]] ⇒ε
pi CP , PP[pi 7→ E [e2]]

if e1 → e2

CP , PP[pi 7→ E [channell()]] ⇒CHANlci
pi CP ∪ {ci}, PP[pi 7→ E [ci]]

if ci 6∈ CP

CP , PP[pi 7→ E [forkπ e0]] ⇒FORKπpi0
pi

CP , PP[pi 7→ E [()]][pi0 7→ e0 ()]

if pi0 6∈ dom(PP) ∪ {pi}

Annotation of ⇒ev
pi :

ev ::= ε | (ci !, ci?) | CHANr ci | FORKπ pi

154 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantics of communication

The simple case:

CP , PP[p1 : E1[output(ci, v)]][p2 : E2[input ci]]

⇒(ci!,ci?)
p1,p2 CP , PP[p1 : E1[v]][p2 : E2[v]]

if p1 6= p2

More generally:

(v1, v2)
(ci!,ci?)

; (e1, e2)

[p1 7→ E1[sync v1], p2 7→ E2[sync v2]]

⇒(ci!,ci?)
p1,p2 [p1 7→ E1[e1], p2 7→ E2[e2]]

if p1 6= p2

155 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantics of communication

The simple case:

CP , PP[p1 : E1[output(ci, v)]][p2 : E2[input ci]]

⇒(ci!,ci?)
p1,p2 CP , PP[p1 : E1[v]][p2 : E2[v]]

if p1 6= p2

More generally:

(v1, v2)
(ci!,ci?)

; (e1, e2)

[p1 7→ E1[sync v1], p2 7→ E2[sync v2]]

⇒(ci!,ci?)
p1,p2 [p1 7→ E1[e1], p2 7→ E2[e2]]

if p1 6= p2

155 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Matching

((send(ci , v)), (receive ci))
(ci!,ci?)

; (v , v)

(v1, v3)
(d1,d2)
; (e1, e2)

(wrap(v1, v2), v3)
(d1,d2)
; (v2 e1, e2)

plus rules for choose and swopping input and output

156 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Subject reduction theorem

CP , PP[pi 7→ e]
6

[] ` e : t & b

?
PB[pi 7→ b]

−→ev
ps

=⇒â
ps

CP ′, PP ′[pi 7→ e ′]

6

[] ` e ′ : t & b′

?
PB ′[pi 7→ b′′]

b′ v b′′

where a is ’the translation of’ ev

157 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Subject reduction theorem

CP , PP[pi 7→ e]
6

[] ` e : t & b

?
PB[pi 7→ b]

−→ev
ps

=⇒â
ps

CP ′, PP ′[pi 7→ e ′]
6

[] ` e ′ : t & b′

?
PB ′[pi 7→ b′′]

b′ v b′′

where a is ’the translation of’ ev

157 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Subject reduction theorem

CP , PP[pi 7→ e]
6

[] ` e : t & b

?
PB[pi 7→ b]

−→ev
ps

=⇒â
ps

CP ′, PP ′[pi 7→ e ′]
6

[] ` e ′ : t & b′

?

PB ′[pi 7→ b′′]

b′ v b′′

where a is ’the translation of’ ev

157 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Subject reduction theorem

CP , PP[pi 7→ e]
6

[] ` e : t & b

?
PB[pi 7→ b]

−→ev
ps

=⇒â
ps

CP ′, PP ′[pi 7→ e ′]
6

[] ` e ′ : t & b′

?
PB ′[pi 7→ b′′]

b′ v b′′

where a is ’the translation of’ ev

157 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantics of behaviours: sequential

p⇒pε ε⇒ε
√

b⇒εb

b1⇒pb′1
b1; b2⇒pb′1; b2

b1⇒p
√

b1; b2⇒pb2

plus rules for choice and recursion

Annotations of ⇒p:

p ::= ε | r !t | r?t | t CHANr | FORKπ b

158 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Semantics of behaviours: concurrent

b⇒ab′

PB[pi 7→ b]=⇒a
piPB[pi 7→ b′

b1⇒r !tb′1 b2⇒r?tb′2
[pi1 7→ b1, pi2 7→ b2]=⇒r !t?r

pi1,pi2
[pi1 7→ b′1, pi2 7→ b′2]

if pi1 6= pi2

Annotations on =⇒a:
a ::= ε | r !t?r

| t CHANr | FORKπ b

159 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Simulation on behaviours
S is a simulation on (closed) behaviours if

√
S b if and only if b =

√

if b1⇒p1b′1 and b1 S b2 then there exists b2 and p2 such that

− b2⇒bp2b′2,

− p1 S∂ p2

− b′1 S b′2.

where
S∂ = {(p, p) | p ∈ {ε, r !t, r?t, t CHANr}} ∪ {(FORKπ b, FORKπ b′) | b S b′}

Define <∼ as the largest simulation.

Lemma: Soundness of Ordering

v is a simulation.

The ordering <∼ is undecidable.

160 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Subject reduction theorem

CP , PP[pi 7→ e]
6

[] ` e : t & b

?
PB[pi 7→ b]

−→ev
ps

=⇒â
ps

CP ′, PP ′[pi 7→ e ′]
6

[] ` e ′ : t & b′

?
PB ′[pi 7→ b′′]

b′ v b′′

where a is ’the translation of’ ev

161 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Algorithm

The algorithm is based on Milner’s W
use unification for the types

collect constraints for the behaviours

Problem: Constraints need not have principal solutions:
incomparable solutions could be mixed.

W(e) = (s, d , C , S) where

s: simple type: only behaviour variables

d : simple behaviour: no REC behaviours

C : set of constraints

S : set of solution restrictions

162 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysing behaviours

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β));
β′)

Finite communication topology?

how many channels might be created?

how many processes might be created?

163 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysis for finite communication topology

Judgements: ` b : (no. of channels, no. of processes)

Definition:

` ε : (0, 0) ` r !t : (0, 0) ` t?t : (0, 0)

` t CHANr : (1, 0)
` b : (n, m)

` FORKπb : (n, m + 1)

` β : (0, 0)
` b : (n, m)

` REC β.b : (n, m)
provided that ...

` b1 : (n1, m1) ` b2 : (n2, m2)

` b1; b2 : (n1 + n2, m1 + m2)
provided that ...

` b1 : (n1, m1) ` b2 : (n2, m2)

` b1 + b2 : (max(n1, n2), max(m1, m2))
provided that ...

164 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Examples: Do we have a finite communication
topology?

1 REC β.t CHANr + (r !t;β)

2 REC β.r?t + (t CHANr ;β)

3 REC β.t CHANr + (r !t;β;β)

4 REC β.ε+ (r !t;β;β)

5 REC β.t CHANr + FORKπ(r !t;β)

165 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Exercise

Determine whether or not the concurrent map functions and
the fan controller have a finite communication topology.

166 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysing behaviours

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β));
β′)

Static processor allocation: Assume that all instances of
processes labelled π will be running on the same processor -
which requirements does this put on the processor?

how many channels labelled r might be created?

how many processes labelled π might be created?

how many times might a channel labelled r be used for
input/output?

167 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Analysing behaviours

pipe fs in out:

RECβ′. (FORKπ (REC β.((r1 + r0)?t; ε; (r2 + r0)!t; β))
+ t CHANr0 ;

FORKπ (REC β.((r1 + r0)?t; b; (r2 + r0)!t; β));
β′)

Dynamic processor allocation: Which requirements does this
put on the processor?

how many channels labelled r might be created?

how many processes labelled π might be created?

how many times might a channel labelled r be used for
input/output?

168 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Suggested Reading (1)

T. Amtoft, H. Riis Nielson, F. Nielson: Behavior Analysis for
Validating Communication Patterns. In Journal on Software Tools
for Technology Transfer, vol.2, pages 13-28, Springer, 1998.

Gives an overview of the development and of a computer system for
carrying out the analysis.

H. Riis Nielson and F. Nielson: Communication Analysis for
Concurrent ML. In ML with Concurrency. Monographs in
Computer Science, pages 185-235, Springer, 1997.

169 / 180

Static Analysis of Services

Abstract Grand View Ambients PI-Calculus Executive COWS Behaviours Traditional Epilogue

Suggested Reading (2)

F. Nielson and H. Riis Nielson: From CML to its Process Algebra.
Theoretical Computer Science, vol. 155, pages 179-219, 1996.

T. Amtoft, F. Nielson, H. Riis Nielson: Type and Effect Systems:
Behaviours for Concurrency. Imperial College Press, 1999.

This book contains the full development.

H. Riis Nielson, F. Nielson: Static and Dynamic Processor
Allocation for Higher-Order Concurrent Languages. TAPSOFT’95,
LNCS 915.

170 / 180

Static Analysis of Services

	Abstract
	Grand View
	Ambients
	Syntax and Semantics
	Static Analysis
	Flow Logic
	Properties of the analysis
	Suggested reading

	PI-Calculus
	Syntax and Semantics
	Flow Logic
	Properties of the analysis
	Interaction points
	Tests and local environments
	Suggested Reading

	Executive
	Suggested Reading

	COWS
	Syntax and Semantics
	Flow Logic
	Properties of the analysis
	Suggested Reading

	Behaviours
	Syntax of CML
	Types and Behaviour
	The type system
	Semantics of CML
	Semantics of behaviours
	Theorem
	Analysing behaviours
	Suggested Reading

	Traditional
	Suggested Reading

	Epilogue

