Flemming Nielson
Editor

ML with Concurrency

Design, >:m_<mmm_ _Bv_m:_mamzo:_
and Application

With 18 Figures

&) Springer

7

Communication Analysis for
Concurrent ML

Hanne Riis Nielson and Flemming Nielson

ABSTRACT Concurrent ML (CML) is an extension of the functional
language Standard ML (SML) with primitives for dynamic creation of pro-
cesses and channels and for communication of values over chennels. Because
of the powerful abstraction mechanisms, the communication topology of a
given program may be very complex and therefore an efficient implemen-
tation mey be facilitated by knowledge of the topology.

This paper presents a framework for snalyzing the communication topol-
ogy of CML programs. We proceed by extending a polymorphic type system
for SML to deduce not only the types of CML programs but also their com-
munication behaviors expressed as terms in a process algebra. This involves
a syntactic ordering for expressing when one behavior has more communi-
cation possibilities than another. We then provide an annotated version of
the published operational semantics for OML and we provide an operational
semantics for the behaviors similar to the operational semantics of other
process algebras, Based on this we define a notion of simulation for be:
heviors and prove that the syntactic ordering is sound (but not complete).
We then prove the semantic correctness of the fype and behavior inference
system by an extended subject reduction result: types of CML programs
are preserved during evaluation whereas their behaviors may evolve as ex-
pressed by the semantics of behaviors. Finally wa show that the simulation
ordering is undecidable whereas the syntactic ordering (with the exclusion
of the axiom for unfolding recuxsive behaviors) is degidable.

Acknowledgment This work {s partially supported by ESPRIT BRA 8130
LOMAPS and by the DART-project funded by the Danish Science Research
Council.

7.1 Introduction

In the previous chapters we have seen the design of a number of func-
tional languages that incorporate constructs for schieving concurrency and
distribution: CML [150, 151, 152] in Chapter 2, Poly/ML in Chapter 3,
LCS [25] in Chapter 4, and FACILE [140] in Chapter 5. Despite the differ-
ences between the languages there are a number of similarities: they are all
higher-order functional languages, they are all eager (as opposed to lazy)

186 Hanne Riis Nielson and Flemming Nielson

languages, they allow the spawning of new processes and the creation of
new channels, and they allow the sending and receiving of values over typed
channels. :

The design of these languages allows for a high degree of modularization
and abstraction in programming but alsc has the undesirable consequence
that the overall communication structure of a given program is not im-
mediately clear from its structure. It is worth pointing out that similar
phenomena arise when functional languages are extended with first-class
continuations (or imperative languages are extended with goto's). This is
somewhat unfortunate, despite the increased expressibility, because knowl-
edge of the communication structure is essential for the implementation as
well as for the programmer reasoning about the correctness of programs.
To be more specific: as regards implementation, knowledge of the commu-
nication structure may facilitate processor allocation so as to match the

. network configuration; as regards the programmer, it may be important
for him to establish that certain communication protocols are adhered to.

In Section 7.2 we therefore present an anclysis of the communication
structure of CML programs by extracting the communication behavior of
the program. The development is inspired by the effect systems developed
in [95, 160] for polymorphic type inference of functional languages with
references. The approach of these papers has been modified to express the
communications that take place during execution: in [167] an analysis is
defined and in Chapter 6 the effects are used to define the denotational se-
mantics of a concurrent functional language. However, these modifications
retain the main characteristics of [85, 160] that effects are sets of individual
actions. In contrast, the development to be performed here (building upon
[122] and [125]) will retain the precise picture of the communication topol-
ogy by including far more causality into the effects. This involves defining
a syntactic ordering on behaviors for when one behavior has more com-
munication possibilities than another; this then replaces the simple subset
relation of [95, 160).

For the semantics in Section 7.3 we adapt the operational semantics
of [151, 152] to include additional annotations that will be useful for our
proofs; this technique was also used in [18] and is merely a convenient way
of stating results without interfering with the dynamic properties of the se-
mantics. Unlike [167] we then define an operational semantics of behaviors;
this is in the spirit of operational semantics of process algebras. Based on
this we define a notion of simulation on behaviors and we show that the
syntactic ordering on behaviors is a sound {but not complete) axiomatiza-
tion.

Unlike previous approaches to relating programming languages and pro-
cess algebras, that tend to regard a programming language as a process
algebra with value passing, we establish in Section 7.4 an extended sub-
ject reduction result; it says that types for CML programs are preserved
during evaluation but that the behaviors may evolve as expressed by the

7. Communication Analysis for Concurrent ML 187

operational semantics for behaviors.

We then show in Section 7.5 that the simulation ordering is undecidable
by a reduction from language containment for simple grammars. We also
show that the syntactic ordering is decidable (except for the inclusion of the
axiom for unfolding recursive behaviors). Finally, we discuss the prospects
and consequences of achieving decidability.

Our conclusions in Section 7.6 outline a few more specific analyses that

can be built on top of the behaviors, Full details of the developments may
be found in the appendices.

7.2 Extracting the Communication Topology

We shall follow [18, 152] and study a polymorphic subset om.O?HH_ with
expressions e € Exp given by

e = clz|fnz=>e|e e
| letz=erine;|rec fr=>e
| if e then e; else e,

Here x wu.a f are program identifiers. In addition to function abstraction
and function application we have a polymorphic let-construct, recursion,
and a conditional. The constants ¢ € Const are given hy

e () | true | false | n
Fxl=] e

pair | £5t | snd

nil | cons | hd | t1 | isnil
send | receive | choose

wrap | sync | channel, | fork,

—————i

We have constants corresponding to the base types unit, bool, and int
together with operations for constructing and destructing pairs and lists.
We may send a value v over a channel ch by sync(send(ch,v)), receive
a value over a channel ch by sync(receive (ch)), and choose between a
list fey,---,e,] of communications by sync(choose([e;, -, e,] }), where
the case n = 0 is written sync (noevent) and acts as a blocking staternent,.
Here the primitives send, receive, choose, and noevent do not actually

- perform the communications but produce delayed communications that

are then activated by the sync operator. The operation wrap(e;, es) then
modifies the delayed communication e; to another that applies e; to the
resulting value; so sync(wrap(e;, e3)) may be thought of as e (sync(e;))
provided that e, performs no communications. Finally, we may fork a pro-
cess to the pool of processes and we may allocate a new free channel to be
used for communication; as is clear from the syntax we shall assume that
these primitives are annotated with labels I, from the set Lab.

Example 7.2.1. Consider the following CML program:

188 Hanne Riis Nielson and Flemming Nielson

i out

fail fail fail

FIGURE 7.1. pipe [f1, f2] in out

let node = fn £ => fn in => fn out =>

fork, (rec loop d => . .
sync (choose [wrap (receive in,
fn x => sync (send (out, f x));

loop d),
send(fail, (3)1))
in rec pipe fs => fn in => fn ocut =>
if isnil fs
then node (fn x => x) in out

else let ch = channel; ()
in (node (hd fs) in ch; pipe (t1 £s) ch out)

For the sake of readability we write ejy;es for (fn n.HEEw => eg) m_.. Ow@ms mm
list of functions and two channels, the program s::. construct a pipe HMm oHH
the functions using local channels for Eﬁmaoosbmo.ﬁum the functions. Eac
of the functions may successfully be mvﬁ:mm.wc :mm argument or cause M
failure. This is illustrated in Figure 7.1 for a list with ﬁéo.mymﬂmﬁm.

7.2.1 Types, Behaviors, and Regions

As usual we shall use fypes to classify the values that expressions can
evaluate to. When executing a CML program, channels and processes EW%
be created and values may be communicated, and we shall mﬁ..wwm M ﬂw
type system with behaviors to record ﬁE.m. We do not know the i o.b.HﬁM
of channels but can use the notion of regions to track the program poin
where a given channel could have been allocated.
For types t € Typ we take
t u= unit|bool |int |«
| - t1—%22 |t x fo |t list
| ‘tchanrltcomb

Here o is a metavariable for type variables. The function type is written

7. Communication Analysis for Concurrent ML, 189

t1 - ¢, indicating that the argument type is t1, the result type is ¢,
and the latent behavior is b; thus when a function is supplied with an
argument the resulting behavior will be b. The type of a channel is ¢ chan r,
indicating that the channel is allocated in region 7 and that values of type
t can be communicated over it. Finally, ¢ com b is the type of a suspended
communication: when it is eventually enacted using sync, it will result in
a value of type t and the resulting behavior will be b.
Formally, behaviors b € Beh are given by

bou= elrlit|r?t|tcnanr|g
_ FORKy b | b1;b2 | by + by | REC B.b

Here ¢ stands for the nonobservable behavior; this will be the behavior
associated with pure funetional programs. We write rlt for sending a value
of type t over a channel in region r and similarly 7t for receiving a value of
type t over a channel in region r. The allocation of a new channel in region
T is written ¢ CHAN r, where ¢ is the type of values to be communicated. The
behavior FORK, b expresses that a process with behavior b and label 7 is
spawned. Behaviors may be combined using sequencing and choice and they
may be recursive. We write 3 for a metavariable for behavior variables. So
for example REC §. (t CHAN T+FORK(r?¢; B)) is the behavior of a program
that either will create a channel, and then no more communications take
place, or it will spawn a process that inputs on some channel and then the
overall process repeats itseif.
Finally, regions r € Reg are given by

r o= :ju_..q.w_b

Here p denotes a metavariabie for region variables. We shall think of + as
set union, so a closed region will be a finite set of (channel) labels from
Lab; formally, we define r, C r2 to mean that all I’s and p’s appearing in
71 also appear in rg.

The type schemes are obtained from types by quantifying over type vari-
ables, behavior variables, and region variables: they have the form <mm._m..ﬂ
where &, m., and 7 are lists of variables.

As usual a type ¢ is a generic instance of a type scheme ts = <mm‘_mu9
written s ~ ¢, if there exists a substitution 6 with Dom(6) = {@35} such
that 8 g = ¢. Here a substitution @ is a finite mapping from type variables,
behavior variables, and region variables to types, behaviors, and regions,
respectively, and we write Dom(8) for its (finite) domain. Furthermore, a
type scheme ¢s' is an instance of ts, written ts > ts’ » if whenever ts' & ¢, also
ts > %. See [50] for a different formulation that turns out to be equivalent
[49].

We shall sometimes use v for any of a, 8, or p and similarly use 7 for
@f3p. Also we shall follow the conventions of the lambda-caleulus [17] and

freely perform alpha-renaming of bound behavior variables. As an example
we have that int —RECAL.B1 in¢ equals int —RECE:.5; int.

190 Hanne Riis Nielson and Flemming Nielson

Example 7.2.2. The desired type of the function node of Example 7.2.1
is

<QH_QM“Q. P1, 02

(@1 —# az) —¢ (@1 chan p;) —¢ (@ chan pp) —°

unit
where
b= FORK, (REC . ((p1%7cu; B; p2lag; §') + polunit))
Here we have assumed that fail has type unit chan py. Turning to the
main program, the type is

<Q_ _QZQH_L_QM. ;
(@ —® o) Llist —€ (@ chan (p; +1)) —° (@ chan pg) =% unit

where
b =REC §'. (FORK: (REC 8. (((p1 +1)?0; p2la; 87} + polunit))
+ (o CHAN (p1 +1);
FORK(REC B”. (((p1 +1)?0; B; (pgle; B”) + polunit));
A1)

O

7.2.2 Ordering on Behaviors

The behaviors record the communications taking place during evaluation.
To obtain a flexible type system it is essential to be able to coerce a precise
record of the behavior into a less precise record. This is illustrated in the
following example:

Example 7.2.3. Consider the program
choose [send (ch, 7), wrap {receive ch’/, fn x => 1)]

where for the sake of readability we write [e;, ez] for cons e; (cons e
nil) and (e;, es) for pair e; es. The first element of the list has type int
com r!int (assuming ch has type int chan r) and the second element has
type int com x'?bool (assuming ch’ has type bool chan r'). We want the
list to have type

(int com (r!int + r'?bhool)) list

to record that either one of the branches may be chosen at run-time. So we
need to coerce the types int com r'!int and int com r'?bool into int
com (rlint + r'?bool). m|

This leads to the introduction of a subsumption (or coercion) rule into
the type and behavior inference system, and this presupposes an ordering
on behaviors. We define the ordering C on behaviors by the axioms and
rules of Figure 7.2 (to be explained below) and we write = for the associated
equivalence defined by

7. Communication Analysis for Concurrent ML 191

® pre-order laws
Pl1. bChH
P2. if b C b, and b, C b3 then by C bs

8 pre-congruence laws
Cl. Ifb C by and bs C by then by;b5 C bo; by
C2. Ifb; C by and b3 C by then by + b3 T by + ba
C3. If by C by then FORK, b1 C FORK, by
C4. 1If b, C b, then REC B. by CrEC 8. by

e laws for sequencing
S1. by;(bo;bs) = (b1; b2); by
52. (b1 + ba); b3 = (by; bs) + (ba; b3)

e laws for ¢
El. b=¢b
E2. be=b

* laws for choice (or join)
JL 5 Cb 4+ b and by C by + b,
J2. b+b=b
e laws for recursion
R1. RECB.b=b8— rEC 4.]
R2. RECS. b=grEc g b8 — B'] provided g ¢ FV(b)

FIGURE 7.2. Ordering on behaviors

by =by if and only if by T b, and b, C by.

We nm.p&aum E to be a pre-order and a pre-congruence. Furthermore, se-
a:mbn.Em. is an associative operation with ¢ as identity, and we wmz.ﬁm a
Hm@..%m‘.ﬁdcﬁg law with respect to choice. A oonmmncmbmm of the laws f

oﬁo_.om is that choice is the least upper bound operator and hence mMme
o_m._ﬂe.m and commutative, Finally, we have a couple of laws for wmoﬁmmos.
It is always possible to fold and unfold a recursion (R1) and to _.mumBm
the bound behavior variable (R2). Actually (R2) is implicitly true anyway

m?msozamwsﬁmnanm_ooue.mnﬂoumm_uoﬁ &wm._. . .
variables. pha-renaming for bound behavior

192 Hanne Riis Nielson and Flemming Nielson

Unlike [122] we shall not extend the ordering C to ﬂﬂm@m .F order to avoid
i i d subtyping.
omplex interplay between polymorphism an . .
ﬂrWMEMqF The main difference between the a%Em. system Emmmgmﬂ in
this paper and those developed in [160, 167] is nrm.wn in the present mav\mmmmnm
the dependencies between the individual communications are recorded.
we were to extend Figure 7.2 with

biibe = b1+ bo
REC 8. b=b[B 1 ¢
O
then our system would degrade to those of [29, 160, 167].

Syntactic Properties of the Ordering

For later reference we list a couple of properties holding for the ordering.

Fact 7.2.4. We have by C by if and only if there exists b such that by +b =
bo.

O
Proof. A simple consequence of the laws C2, J1, and J2.

Fact 7.2.5. If b; C by then m«_.ﬂ\ﬁvﬂv c .T.J\.Quwu

Proof. A simple induction on the structure of the inference b; C ba. m}

Fact 7.2.6. If b) C by and € is a substitution then 8 by T 6 ba.

Proof. A simple induction on the structure of the inference b; C ba. g

7.2.8 The Type and Behavior Inference System

We are now ready to develop the inference system for extracting types
and behaviors. The typing judgments have the form

tenvle:t &b

where lenv is a fype environmen! mapping Emmﬁmmmwmo h%hﬁwwwmw Mw%%‘.m
i is its behavior. Since -by-

chemes, ¢ is the type of e, and b is its . . . ;
M@Em semantics, there is no observable behavior associated éﬁw. monmmm_wwm
an identifier and therefore the type environment does not contain ME\ .w.
havior component {except embedded within the ﬁW@Mm o“. &GM mmw MMMM .

i i in Fi -3 and are fairly close to -
The typing rules are given in Figure 7 nd ¢ ek ‘ ;
dard %%mm muﬂmvﬁ that we also collect behavior information; these rules will
be explained in detail shortly.

7. Communication Analysis for Concurrent ML 193

tenvbc:t & & wmﬂ%@mOm?vYﬂmhammv

tenvbx:t &b mmﬁmﬁﬁﬁavv.ﬁmbamﬂo

tenvlz s b et/ & b .
[7
tenvbfnz=>e:f S0 ¢ & §F ifeCh

.m.mqwe_lmu. mmnﬁ\ Nm @\ ”—H..@Huwwu@m@

tenvle) i ¢ & b tenv(z s ts] ez ity & by
tenvblet z=e) iney:t, & &

ifts = gen(tenv, b)t; and bi; 0 T B

tenvlf =t Ptz b e: ¢ & b fel y
tenv b rec f(z)=>e:t P ¢ & b ne=

tenuFe:bool & b tenvi-e, 1t & by tenv eyt & by
tenv - if ethene; elseey:t & O

if b (by + b)) C ¥

FIGURE 7.3. Typing system

A main decision is how to incorporate the desired notion of subsumption

that allows a precise record of the communication possibilities to be coerced
into a less precise record. Basically, there are two approaches we may adopt;:
® Late subsumption: coercions can happen at any time inside any type,
as when the type system has a general subsumption rule on types.

(In [162] this is called subtyping.) :

» Early subsumption: generic instantiations produce the required spe-
cialized types. (In [162] this is called subeffecting,.)

In [122] we used the first approach for a monotyped version of the lan-
guage, thereby obtaining a type system with subtyping. Here we are in
a polymorphic setting, and to avoid the complex interplay between poly-
morphism and subtyping we shall use the second approach (also taken in
(125, 160]). This means that the latent behavior of functions and suspended
communications always must be prepared to be larger than what seems to
be needed.

The types of identifiers are obtained as generic instances of the appro-
priate type schemes. The actual behavior is ¢, but we may want to use a
larger behavior, and to express this we exploit the ordering on behaviors.
This turns out to be a general pattern of the axioms and rules: it is always

194 Hanne Riis Nielson and Flemming Nielson

possible to enlarge the actual behavior. In the rule for function abstraction
we record the behavior of the body of the function as the latent behavior
of the function type. The construction of a function does not in itself have
an observable behavior and so is €. In the rule for function application we
see that the actual behavior of the composite construct is that of the op-
erator foltowed by that of the operand and then the behavior initiated by
the function application itself; the latter is exactly the latent behavior of
the function type. One may note that it is inherent in this rule that CML
has a call-by-value semantics.

In the rule for local definitions we generalize over those type variables,
behavior variables, and region variables that neither occur free in the type
environment nor in the behavior; this is expressed by

gen(tenw, b)t = let {GG5} = FV(t)\ (FV{tenv) U FV (b))
in V&@p.t,

where F'V (- --) denotes the set of free type variables, behavior variables, and
region variables. The actual behavior of the let-construct simply expresses
that the local value is computed before the body. In the rule for recursive
functions we make sure that the actual behavior is equal to the latent
behavior of the type of the recursive function. The rule for conditional
should be straightforward; an alternative and equivalent definition would
be to assume that the &, and bs occurring in the rule are equal (as may have
been obtained by subsumption) and then use b; by instead of b; (by + ba).

This leaves us with the type schemes for constants. Each constant has
associated a constrained type scheme as shown in Figure 7.4. A constrained
type scheme cts = V&@Bp.tp[C] is a type scheme that additionally incorpo-
rates a constraint C; this is a finite set of inequalities of the form § > b
or p > r. A type ¢ is an instance of this constrained type scheme, written
cts » t, if there exists a substitution 8 with Dom(f) = {@G5} such that
 tg = t and such that the constraints ¢’ are solved by 8, written ¢ = C.
This latter condition amounts to 83 3 8bfor each § > bin C and
0p20r foreach p > rin C. (Here > is a formal symbol whereas 3 is
the ordering defined in Figure 7.2.)

Note that for the primitives also to be found in SML the constraints only
involve €, indicating that no communication need take place. Also, most of
the primitives of CML are only constrained to have an ¢-annotation occur
on the function arrows, although more interesting behaviors have to appear
elsewhere in the type. The only three constants where function arrows are
constrained to have non-e behaviors are sync, which extracts the delayed
communication of the argument and enacts it; fork which forks a new
process; and channel, which allocates a new channel.

Example 7.2.7. Consider the program of Example 7.2.3, and let tenv be
a type environment with tenv ch = int chan r and tenw ch’ = bool chan
r’. By appropriate instantiations of the constrained type schemes of send

7. Communication Analysis for Concurrent ML 195

e TypeOf{(c)

+ Vi, Ba. int —P1 int —P2 ing [e < B1,e < Ba]

pair Vay,az, 81, 82. a; =P ay —P2 o x az [e < f1,e < B
fst Vai,a2,0. a1 x ag —f o e < g

snd Voy,02,8. 01 X ag =P oy [e < B

send Va, B1, B2, p. (@ chanp) x o —f: acomfp [e < By, pla < B
receive

Ve, 1, B2, p. (@ chan p) -5 o com B, [¢ < B, p?a < o]

Va, B, B2, Bs. (crcomBr) list —2 o com B, [e < 82,81 < Ba]
wrap Vo, a2, 1, B2, Bs, Pa.
(arcomfBr) x (a1 =2 az) P oy com B
e < B3, B1; 82 < 8]
sync Va, 51, Bz (o com By) —P2 o [, < Ba)
channel; Va, 8, p. unit —P (o chan p) [cHAN p < 8,1 <)

choose

fork, Va, b1, Bz. (unit —7 o) P2 ynjy [FORKL B < fBs)

FIGURE 7.4, Type schemes for selected constants

and receive we get

tenv - send: int chanr x int —¢ int com (r!int +r'?bool) & ¢

tenv - receive: bool chanr’ —¢ bool com (r!int +r'?bool) & €
Using the typing rules of Figure 7.3 we then get

tenv - send (ch, 7): int com (rlint + '7bool) & e

tenv |- wrap (receive ch/, fn x => 1) |

:int com (r!int + r'?bool) & ¢

so the two elements of the list
. get the same type, and therefore th
typing of the program succeeds. ’ oqm_.,mh

Syntactic Properties of the Typing System

H.,_ou. later reference we list a couple of standard properties holding for the
typing system; most are proved in Appendix 7.A.

Lemwa 7.2.8. If tenv[z — ts] F e : t & b and ¢’

-
ts'lFe:t&b. > ts then tenv[z —

196 Hanne Riis Nielson and Flemming Nielson

Fact 7.2.9. Iftenvle:t & band bC ¥ thentenvbe:t & V.

Proof. Inspection of the last step in the proof of tenvi-e:t & b. a

Lemma 7.2.10. If tenvl e : ¢t & b and @ is a substitution, then 8 tenv
e:ft& b

We now define the set IV (tenv F e : t&Db) of independent variables
oceurring in the proof of tenw I ¢ : t & b to be all the variables in the proof
tree except those of FV (tenv).
Fact 7.2.11. Given a finite set X of varjables and an inference tenv F e:
t & b one may without loss of generality assume that X N I'V{tenv ke :
t&b) = 0.
Proof. Let 6 : IV(tenv - e : t&b) — X be a bijective renaming of all
independent variables into the complement X of X; this is possible because
X is infinite. Using Lemma 7.2.10 we get (6 tenv) e : (0 £) & (0 b). By the

definition of independent variables this amounts to tenv - e : (0) & (6 b)
and here we have no occurrences of variables from X \ F'V (tenv). m

Lemma 7.2.12. If tenv - e : t&b, Dom(tenv’) N Dom(tenv) = 0, and
FV(tenv') N IV(tenvt-e: t&b) = 0 then tenvtenv' - e: t&b.

Corollary 7.2.13. If tenv - e : t&b and Dom(terv') N Dom(tenv) = 0
then tenvienv' - e: t&b.

Lemma 7.2.14. Assume tenv[z — ts|Fe:t & bandtenvbep:tp & e
If gen(tenv, €)tp = ts then tenv - e[z > eg| : £ & b.

7.2.4 Subject Fxpansion Properties

To increase our faith in the typing rules for recursion and polymorphism
it is instructive to compare the typing of the constructs with the typing of

their unfolded versions.
The unfolded version of a recursively defined function can always be

typed in the same way as the recursively defined function itself. To see this
assume that

tenv - rec f(z) =>e:t bt &V,
because € C b and tenv[f — t = t/][z — {] e : ¢’ & b. But then
tenv[f st =P t]Ffna=>e:t -t &b

as well as tenv I rec f(z) => e: t = t' & ¢. We now use Lemma 7.2.14 to
obtain

7. Communication Analysis for Concurrent MI, 197

tenv b (fn z => e)[f - rec flz)=>el:twb¢ & ¥

showing that the expansion (foz=
T=>e =
type and behavior as rec flz) =>e. N i e %) => e hoa the ssme

Example 7.2.15. Consider the following expression e:

u..md X = sync (receive ch)
in sync (send (ch, 2)); x,

where we assume that ch h

P as type int chan r. In the inference system we

o~ Fe:int & r?int; rlint
The expansion of e ig

sync (send (ch, 2)); sync (receive ch)
and here the inference system gives

-+ Fe:int & rlint; r?int

The two behaviors rfint;rlint an

ing that the let-construct need n
sion.

d rlint;r?int are incomparable, show-
ot have the same behavior as its expan-

(W]

mM_Hc ownm:.u a positive result we consider the situation where the let-bound
pression involves no communication. To be specific, assume that
’

~ tenvbkletz=e¢; in e2:t& b because teny Fei:t; & ¢
and note that Lemma 7.2.14 then gives
tenvb ez~ e):t & b,

0 that in this case the expansion ep [z

as let z =e; in e,. # €1] has the same type and behavior

7.3 Semantics

Mwmw.w: now E,mmmuﬂ a m_nnzcn:w& operational semantics for CML. The for-
ation is close in spirit to (152] and amounts to three inference systems:

198 Hanne Riis Nielson and Flemming Nielson 7. Communication Analysis for Concurrent ML 199

7.8.1 Semantics of CML

We begin with the sequential evaluation of expressions. This takes care
of all primitives of CML except sync, channel;, and fork,, which are pair wy (pair w)
the constants of Figure 7.4 that have a nontrivial latent behavior. The !

Operator Operand Result

transition relation for sequential evaluation has the form (pair wi) {pair w; wa)
e— ¢, fst (pair wiwp) w,

where e and e’ are closed expressions, that is, they do not contain free snd (Pair wiwy) w,

program identifiers. To enforce a left-to-right evaluation we introduce the cons un {cons w;)

concept of an evaluation contezt E (55, 182], which specifies where the next (cons w,) wy (cons w, wn)

step of the computation may take place:

hd cons w
Eu=[]|Ee|wE|let = E ine | if E then e, else e, (1w2) Wy
. . .WH AOOND.W Wi ng Uy
Here w denotes a weakly evaluated expression [142] (see below), that is, an L
isnil nil true

expression that cannot be further evaluated. The idea is that [] is an empty
context (called a hole), and in general E specifies a context with exactly isnil {cons wywy) false
one hole in it. We shall then write E[e] for the expression E with the hole
replaced by e. The next step of the computation will take place at the point send w (send w)

indicated by the hole. As an example consider function application. The receive w (receive w)
presence of E e means that computations in the operator position are pos-

sible whereas the presence of w E means that computations in the operand choose w {choose w)
position are possible only when the operator is weakly evaluated (for exam- wrap w {wrap w)
ple to a function abstraction). In this way it is ensured that the operator +
as well as the operand are evaluated before the function application itself i {+ m1)
takes place (for example by B-reduction). {+ ny) Ny n where n =n, +n,

The weakly evaluated ezpressions w € WExp are given by

wi=c |z |tme=>e|(dw)]|...|{w...w),

where » > 1 and ¢ ranges over all constants except sync, channel;, and FIGURE 7.5. Tabulation of §
fork,. Weakly evaluated expressions of the form (¢"wy ... w;) are used to
record the evaluation of constants as indicated in Figure 7.5, where we
define the relation § C WExp x WExp x WExp. Note that § is partial, Elrec f(z)=>e] — E [(Enz=>e)[f (rec f(z) => €)])
so for example hd nil is undefined. El(fnz => e) w|

The transition relation is specified in Figure 7.6. The clauses should be wl = Elefzw w]]
fairly straightforward. The first rule expresses the one-level unfolding of Ellet z=win e] - FE [ez— w]]
a recursive definition. Then we have axioms for S-reduction and for let-
reduction. The fourth axiom is an abbreviation for two axioms expressing E[if w then e; else e2] — ﬁ Eei] if w = true
the evaluation of a conditional depending on the outcome of the test. Fi- E [eg] if w= false
nally, there is an axiom for -reduction which inspects Figure 7.5 to deter- Eluyw,] - E (] if (wy, w5, 10) e s

1, Wz, Ws

mine the result.

We shall now introduce the transition relation for concurrent evaluation.
Channels will be associated with channel identifiers, ci € Cldent, and
processes with process identifiers, pi € PIdent. We shall assume that
the sets CIdent, PIdent, and Ident (of program identifiers) are mutually

FIGURE 7.6. Sequential evaluation

200 Hanne Riis Nielson and Flemming Nielson

€
ot

CI& PP[pi — E[channel; O] — 5™ < CI U {ci} & PP[pi — Eci]]

if ci ¢ CI

CI & PPlpiy = Elfork, w]] —5orr 72

CI & PP[pi; — E[O]][pi2 — w (]
if piz ¢ Dom(PP) U {pi}

AEESMV nna._/.\m,ﬁwv ﬁmf QMV

CI& PPlpiy = Ei[syncw[][piz — Ea[syncws]]
— (&) o1 & PPpiy — Filea]|[piz — Ealea]]

Pi1,piz

if pin # piz

FIGURE 7.7. Concurrent evaluation

disjoint. The configurations have the form C'I & PP, where CT is the set of
channel identifiers that are in use and PP is a (finite} mapping of process
identifiers to expressions. The transition relation is written

CI & PP —& CI' & PP/,

where ev is the event that takes place and ps is a list of the processes that
take part in the event—depending on the event there will be either one or
two processes involved. An event ev € Ewv has one of the forms

ev = € | CHAN; ¢i | FORK, pi | (cil, ¢i?)

and may record the empty event, the creation of a channel with a given
channel identifier, the creation of a process with a given process identifier,
and the communication over a channel.

The transition relation is specified in Figure 7.7. The first rule embeds
sequential evaluation into concurrent evaluation and the name of the pro-
cess performing the event is recorded. The second rule captures the creation
of a new channel. The channel is associated with a new channel identifier
and the transition records the name of the process performing the event
together with the event itself. The third rule takes care of process creation,
and here we record the process performing the event as well as the one
being created by the event. Finally, we have a rule expressing the syn-
chronization of communications, and here we use the matching relation
(explained below). The transition records the two processes involved in the
communication as well as the channel used for it.

7. Communication Aralysis for Concurrent ML 201

({send(pair ci w)), {receive ci) (el (w, w)

(w1, w3) X5 (e, e5)
({choose(cons w; SMVYS& E\w_\m& Amfmmv

((choose wy}, w3) “g2) (e2, €3)

({choose(cons wy wg)), ws) (yda) (ea,e3)

d
(w1, ws3) g (e1,€3)

({wrap(pair w; wa}), wa) Qw_\m&.

(w1, ws) “U5? (e1, e,)

d _&.H
(w3, w1) 25V (eg, 1)

(w2 e1,e3)

FIGURE 7.8. Matching communications

Finally, the matching relation is given two weakly evaluated expressions
that are ready to synchronize, and it specifies the outcome of the coin-

munication and records the event that takes place. This is expressed by a
relation of the form

Sy o U
ﬁnskws.u ﬁnp\mu.vn..._v

A@H,va Amwumnv and ﬁ@f@wu Am?mwu .

The relation is specified in Figure 7.8. The first axiom captures the com-
munication between a send and a receive construct. The second and third
axioms take care of the situation where there are several possible commu-
nications available in the first component. The fourth axiom shows how
the value communicated may be modified using the wrap construct (as was
explained already in Section 7.2). Finally, we have a restructuring rule.

7.3.2 Semantics of Behaviors

We begin with the sequential evolution of behaviors, Here the configura-
tions of the transition system are either closed behaviors, that is, behaviors
without free behavior variables, or the special lerminating configuration V-
The transition relation takes the form

b=Ph,

where b is either a closed behavior or v/, and where p € ABeh is an atomic
behavior as given by

p u= €|rlt|r? |t CHAN r | FORK, b.

202 Hanne Riis Nielson and Flemming Nielson

p=Fe¢ €=/

b=>¢b REC f. b= b[— REC 8. b
&H =3P vw
m:.m @w =P &Hm bo

by =P @._“_
by + by =P @H

FIGURE 7.9. Sequential evolution

Here ¢ is supposed to capture the sequential evaluation steps of CML ex-
pressions, whereas the remaining atomic behaviors capture the concurrent
steps.

The relation is specified in Figure 7.9. The first axiom expresses that any
atomic behavior can be performed and in doing so becomes ¢. The second
axiom expresses that ¢ can terminate. The third axiom means that at any
time any number of ¢ actions can be performed by any behavior (observe
that the terminal configuration is excluded here so that / is a stuck con-
figuration). It corresponds to the fact that in the semantics of CML any
number of evaluation steps can be performed in the functional part of CML
between those involving the concurrency primitives. The fourth axiom ex-
presses the unfolding of a recursive behavior. Then we have two rules for
the evolution of sequential behaviors: only when the evolution of the first
component has reached a terminal configuration is it possible to start evo-
lution of the second component. The last two rules express the evolution of
a choice between two behaviors; due to the axiom b =° b these rules allow
internal choice between possibilities.

To express the concurrent evolution of behaviors we introduce process
identifiers as in the semantics of CML. The transitions have the form

PB =% PB,
where PB and PB’ are mappings from process identifiers to closed be-
haviors and the special symbol +/. Furthermore, a is the action that takes
place and ps is a list of the processes that take part in the action. As in the

semantics of CML, ps has one or two elements depending on the action.
The actions a € Act are given by

a =€ |t CHAN 7 | FORK. b | (71t r7%).

The transition relation is specified in Figure 7.10. The first four rules embed
sequential evolution into the concurrent evolution: the first rule captures
the termination of a behavior, the second rule captures a silent action,
the third rule captures channel creation, and the fourth rule captures pro-
cess creation. In all cases the action as well as the processes involved are

7. Comimunication Analysis for Concurrent ML 203

b=*/

b=y
PBlpi— b] =%, PBlpi — b]

m. "v.w CHANT mw\
PBlpi — b =L PB[pi = 7]

b = FORKx bo Y
PBlpiy > b] =17 % PB[piy - b|[piz — by

if piz ¢ Dom(PB) U {piy}

OH =it vm : bo "vq..w“ O..m
PBlpiy — bi][piz — bo] =>{7""" PBlpiy — b][piy 1 b]

. Phpiz
if piy 5 pio

FIGURE 7.10. Concurrent evolution

recorded. The final rule captures the communication between processes.
Here the matching simply amounts to ensuring that the channels of the

two processes are in equal regions and that they specify equal types of the
values communicated.

7.3.8 Stmulation Ordering on Behaviors

In o.amn to formulate and prove the subject reduction result in the next
section we need to relate the ordering C on behaviors to the semantics of
behaviors. Basically this amounts to the definition of 2 simulation ordering

ozm,cmwmigm and a proof showing that C is a simulation ordering. First
define

b=Pb
to mean that there exists » > 0 and behaviors b1, -+, b, such that
b=>fby =°...=¢h, =Pb,

Wmomz. that b ranges over closed behaviors as well as +/. Thus the atomic
behavior p may be prefixed by any number of trivial atomic behaviors.
. We shall say that § is a ground simulation on pairs of closed behaviors
1

* / Sbifand only if b = /,

e if by =P by and b; S by then there exists b2 and po such that b, =72
bz, p1 82 pp and by & by,

204 Hanne Riis Nielson and Flemming Nielson

where 82 is defined by

e p 82 p whenever p is a primitive action of the form e,r!t, 77 or
t CHAN r, and

o (FORK, b1) S? (FORK, b2) if b1 S be.

We shall say that & is a simulation on pairs of behaviors (b1, bs) satisfying
FV(b) CFV(by) if

e by S by mE@Hmm Am &Hv S AQ &wv
for all ground substitutions @ defined on FV{b1) U FV (ba).
We define to be the largest simulation.

Fact 7.3.1. If FV (b)) € FV(b,) then by be is equivalent to (8 1) 5 (8 b2)
for all ground substitutions # defined on FV (b} U FV{b2).

Proof. Define T’ by the property claimed for 5: b 57 by if and only if
(@ 1) 5 (O b2) for all ground substitutions @ defined on FV(b;) C .ﬁd\@_ml.v.
Clearly 5 is a simulation so by 5’ bs implies b; & by by the choice of L.
To see that by 5 by implies b; =7 by simply use that T and &’ agree on
closed behaviors, that 5 is a simulation, and the definition of 5. 0

This definition of simulation is inspired by the notions of bisimilarity as
developed for the process algebras CCS [108] and CHOCS [164]. .

In order to relate 5 and = we extend the ordering C to configurations
by taking +/ C +/. Then we have the following results:

Proposition 7.3.2. C is a simulation.

Proof. See Appendix 7.B m]

Corollary 7.3.3. If by T by then b, 5 bo.

Corollary 7.3.3 shows that C as defined in Figure 7.2 is a sound aziom-
atization of 5. It is not complete because for FV (b)) C FV(ba) we al-
ways have (RECS.8);b1 5 by whereas (RECS.8);b1 C ww .momm not hold
in general given the axioms and rules of Figure 7.2. Similarly we have
RECS.(B + b) & RECS.b whereas we do not have RECS.(8 + b) E RECA.b.

Remark. For certain applications it might be worthwhile to introduce
laws like

t) CHAN r11; T3 CHAN 79 [i3 CHAN r9; {; CHAN 7y,

FORKy, b1; FORKg, b2 T FORKg, ba; FORKg, by,

reflecting that the order in which channel identifiers and process Emuﬂmmwm
are allocated does not matter. However, these axioms are not sound with

7. Communication Analysis for Concurrent ML 205

respect to our definition of simulation. Overcoming this is no easy task; the
problems are analogous to those arising for imperative languages in trying
to ensure that the order of declarations of identifiers is immaterial. O

7.4 Subject Reduction Property

We shall prove that the typing system of Section 7.2 has the following
subject reduction properties:

» Types are preserved during computation.
¢ Behaviors evolve during computation.

The formalization and proof of this result is in three main stages: (1) We
prove a subject reduction property for the sequential evaluation of expres-
sions; (%) then we prove a correctness property for matching; (4i) and
finally we prove the subject reduction property for concurrent evaluation.

Further Syntactic Properties of the Typing System

But first it is convenient to establish a few additional syntactic properties
of the inference system that concern the properties of evaluation contexts.
Most of these results are proved in Appendix 7.C.

Fact 7.4.1. If teny |- Eleo] : t & b because tenvgp - eo : tg & by then tenv =

tenvg and FV(b) O FV(by); hence FV{tenv) U FV(b) 2 FV{(tenvp) U
Fvb).

Proof. This is a straightforward induction on E. O

Lemma 7.4.2. If tenv - Efeq) : t&b because tenv - ep : Iy &by, and
if FV(tenv’) C FV(b) and Dom(teny’) is disjoint with all identifiers oc-

curring in tenv - Eley] : ¢ &b, then tenwteny' - Eleq] : &b because
tenvienv' e : 4, & by.

Proof. This is proved by induction on E in Appendix 7.C. O

Fact 7.4.3. Assume that teny - Eleg) : t & b because tenv - eo : iy & by;
if tenv b ef : tg & by then tenv - Ele}] : ¢ & b because teny ey : to & by.
Lemma 7.4.4. Assume that

tenv Eleg) 1t & b because tenvl-ep:tg & By

206 Hanne Riis Nielson and Flemming Nielson

If furthermore tenwv I~ ¢} : tg & by where p; b C by for some atomic behavior
p then there exists & such that

tenv - Elep] 1t & O
and p; b Cb.

7.4.1 Sequential Correctness

It is natural to restrict attention to closed expressions because the defini-
tion of an evaluation context is such that we never pass inside the scope
of any defining occurrence of a program identifier. However, we have to
allow expressions to include channel identifiers that have been allocated
in previous computation steps. To formalize this we shall write cenv for
a mapping from channel identifiers to types (so cenv i will always have
the form ¢ chan r). We shall say that e is closed if ecenv F e : £ & b for
some cenw, ¢t and b; this requires the type environments of Figure 7.3 to
range over channel identifiers as well as program identifiers. To express
the correctness result we shall also need typing rules for weakly evaluated
expressions:

tenube it =t &e tenvbFwg:t&e .
tenvF (¢ w):t & b ifeld

tenv b {c wy - wu_ 1)t =t &e tenvlw,:t&e e b
tenvt (dwy - wn):t &D =

It is immediate from these rules that we have
Fact 7.4.5. Iftenvbhw:t & btheneCbhandtenv-w:t & e

We now have the following result showing that sequential evaluation pre-
serves the type and behavior:

Proposition 7.4.6. Assume e — e’ and cenvbe:t & b. Then cenv - ¢ :
t & b.

Proof. The proof is by induction on the inference e — &' and is given in
Appendix 7.C. Q

7.4.2 Correctness of Matching

The matching of two weakly evaluated expressions gives rise to a new pair
of expressions. To formalize this we shall define B cenv ci! = vt and
B cenv ¢i? = r7t whenever cenv ¢i = t chan r. Then we have the fol-
lowing result showing how behaviors evolve into an atomic behavior and
the remaining part of the behavior:

7. Communication Analysis for Concurrent ML 207

-Proposition 7.4.7. Assume (w, w;) 1) (e1,e2) and

cenv 1wy :) com by & € and ceny - Wy 1ty com by & €.

Then there exists 4] and b} such that
cenvi~e; ity & B and cenv b eq 1 s & bs
and (B cenv d1); b} C by and (B cenv dp); b, T by.

Proof. The proof is by induction on the inference for matching and is given
in Appendix 7.C. O

7.4.8 Concurrent Correctness

The concurrent subject reduction property expresses that each step of the
concurrent evaluation of the expression can be mimicked by a number of
steps In the concurrent evolution of its behavior.

Let us first relate the configurations CI & PP of the concurrent evalu-
ation of expressions to the configurations PB of the concurrent evolution
of behaviors. We shall say that CT & PP is cenv-related to PB if

Dom(PP) = Dom(PB) and Dom(cenv) = CI.

H._Em ensures that we are dealing with the same process and channel iden-
tifiers. Furthermore, we say that CI & PP is ceny-described by PB if it

is cenv-related to PB and if for all pi € Dom(PP) there exists a type £,;
such that ’

cenvt PP pi: t,; & PB pi.

We shall also need to relate the events ev of the concurrent evaluation
of expressions to the actions @ of the concurrent evolution of behaviors. So
assume that C7 & PP is cenv-deseribed by PB. Clearly we would expect
FORK pi to correspond to FORK, (PB pi) and CHAN; i to correspond to
t CHAN 7 when cenv ¢i = t chan r and I € r; this is formalized by an
auxiliary function denoted A (cenv, PB):

A(cenv,PB) e = ¢,
A (cenv, PB) (CHAN, ci)

It

t CHAN 7 if cenv ¢i = ¢ chan r,

and! € r,
A (cenv, PB) (FORK, pi) = FORK, b if PB pi=b,
A (cenv, PB) (ci!,ci?) = (rlt,r?%) if cenv ci = ¢ chan r.

. The final preparation is to introduce a notation for a sequence of steps
in the concurrent evolution of behaviors. For this we write

208 Hanne Riis Nielson and Flemming Nielson

PB =4 PB'

to mean that there exists n > 0 and configurations PB,,---, PB, such
that

PB=}; - =}; PBp,=}, PB',
where pi,---,pin, are process identifiers from the list ps. Thus, the pro-

cesses of ps are allowed to perform some trivial actions before they engage
in the joint action a. We then have the following result linking concurrent
evaluation to concurrent evolution:

Theorem 7.4.8. Assume that
CI & PP Ivmu cr' & PP

and that CI & PP is cenv-described by PB. Then there exists cenv’ and
PB' such that

PB =, PB,
where CI' & PP’ is cenv’-described by PB’, A (cenv’, PB’) ev = @, and
we furthermore have cenv'[C1 = cenv.

Proof. The proof is by induction on the rules for concurrent evaluation and
is given in Appendix 7.C. In this proof we exploit the mcjwaummm .AOQHOH_NH%
7.3.3) of the ordering C (Figure 7.2). However, it may be interesting to note
that the laws PL1, P2, C1, C2, S1, E1, E2, and J1 suffice for carrying out
the proof. O

7.5 Decidability Issues

‘We have previously established the soundness (Corollary 7.3.3) of the or-
dering T with respect to the simulation ordering L ; we also mroéma. that
we do not have completeness. It is a consequence of the results established
in this section that we do not desire completeness. The reason is that &

turns out to be undecidable whereas & (for proofs not involving R1) turns
out to be decidable. We also discuss the consequences of incorporating the
use of R1 into our results.

7.5.1 Undecidability of the Simulation Ordering

‘We now show that the simulation order L is undecidable by a Hmmmnﬁo.n
from the language containment problem for simple grammars [56). This is
in the spirit of the undecidability proof for the Basic Process E.mo,cwm [64]
but due to the differences between our behaviors and the Basic Process
Algebra it is simpler to perform a direct reduction.

7. Communication Analysis for Concurrent ML 209

Let G=(V,T,P,5) be a simple grammar without useless nonterminals,
To be specific, V is a finite and nonempty set of nonterminals, 7" is & finite
and nonempty set of terminals, P is a finite set of productions, and § € V
is the start symbol. Each production of P is of the form Ay —a A; ... A,,
where 4; € V and a € T and for any two productions Ag — a A; ... A, and
Ao —a Aj.. AL, wehave A,... A, = 1.--A;,. For each nonterminal A
there is a derivation from $ to a sentential form involving A and from this
to a terminal string. As a consequence every finite derivation starting from
S can be extended to one that ends in a termina] string.

As a first step we transform G to G = (V',T', P, §'), which operates
over the symbols of our behaviors. Let V' be a finite subset of behavior
variables, 7" a finite set of behaviors of the form U(unit —*)"unit, and
let © be a bijection from V to V’ and from T to T, Then P’ contains
O(A—a A)...A,) whenever P contains A — g Ay...Ap and & = ©(8).
Clearly ' enjoys the same properties as G: it is simple, and all finite
derivations from the start symbol to a sentential form may be extended
to one that ends in a terminal string. Furthermore the language Lg(57)
generated by G’ is isomorphic to the language L5(S) generated by G.
Indeed, without loss of generality for the arguments that follow, one might
assume G = &',

As a second step we construct a behavior system B = (b, {f; = b; | i <
k}) as follows: b is &', and if 8; € V' and B — al mw.:bmﬂt:._md. —
a™AT .. AT are all the G;-productions in P’ , We set

F“HAnﬁmww...w&wb._-:.._.mnﬂ“ mnm...wbaisv.

By our assumptions we have m > 0 and each n; 2 0. We define the
language £({B) generated by B as

Lo =b i<k ={w e T* 65" y},

érﬁm JIMV* Hmngumm@méﬁgmx?m&ogg% = and .IMV is like —
for behaviors but with the additional axiom B ”mv bi. Clearly £(B') =
Lg(8'), and every finite derivation starting from b can be extended to one
ending in /. Also, each b; has all a!,...,a™ to be distinct.

As a third step we perform a number of ministeps for reducing the num-
ber of equations. Each ministep transforms (B0, {B: = b; |0 < i < &k}) to
(b6, {8: = b} | 0 < i < k}), where b, = b — RECS:.bx). We thus end
up with B’ = (¥,0), where & has no free behavior variables, The system
B’ enjoys the same properties as B and has L(B") = L(B) because these
properties are preserved by all the ministeps.

Focusing the attention on b’ and the language L) ={w|b 5" v}
generated by it we have £{b') = £(B"). Also, each finite derivation from &
may be extended to one ending in \/; we write = o for this, and it is a

consequence that 5" has no free behavior variables. Note that if b’ 2

210 Hanne Riis Nielson and Flemming Nielson

then =y b’ implies = b”. Furthermore, each sum of behaviors in & ,Bsm..a
have distinct first actions; we record this by decreeing Fp b, where +p is
defined inductively by

Fp e Fp 11t Fp 8
Fpby Fpbs Fpb
Fp b1;b2 Fp RECB.D
Fpby...0p by simple
Fo Brb) oo (paiB) (Ploe o Pr) S0
where (p1,...,pn) is “simple” if n > 0 and each p; is a primitive action

different from ¢ and all p;’s are distinct. {Note that we did not define
Fp 1 7i,kp FORK,(D), or Fp £ CHAN r because these constructs cannot

appear in b'.)
‘We now need two technical results:

Lemma 7.5.1. (i) If bp mvf_ﬂz by and by =° by then Fp bo,|Fn b
and L(bs) C L(by); furthermore, if pw € L£(by) for some p # ¢ then
{pw|pw € L(b1)} = {pw |pw € L{b2)}.

?Q Iftp &H._”Z by and by =P by with p # ¢ then, Fp &wv_nz by and
Lb) = {w | pw € L(b)}.

Proof. We already have =x by from a previous observation. The remaining
claims are proved by induction on Fp b. We omit the details. |

Lemma 7.5.2. If bp &',Fp b, =n U, En b then L(¥) C L") &
b S b,

Proof. See Appendix 7.D. |

We can now state our main result:
Proposition 7.5.3. £ is undecidable.

Proof. Language containment for simple grammars with no useless E.ESH.
minals is undecidable due to [56]. The above procedures transform simple
grammars G; and Gz with no useless nonterminals into behaviors 5] and
by such that Lg,(51) C L, (S2) amounts to L£(b)) C L£(b;) and Srmmm
Fp bl,Fp b, [=n by and |y bh. By Lemma 7.5.2 £g,(51) C £g,(S2) is
then equivalent to b, & bo. If the latter were to be decidable we would have
a contradiction. |

7.5.2 Decidability of the Syntactic Ordering

Although 5 is undecidable we can show that the subset of the ordering
C defined by excluding the axiom R1 from the laws of Figure 7.2 is indeed

7. Communication Analysis for Concurrent ML 211

[el = €
[rte] = rift]
[r?4] = r?[t]
[t cHAN 1] = [t] cHANT
(A1 = B
[Fork,] = FORK, [b]
[b1; b2] = seq([b1], [b2])
{61 + b2] =[] + o]
[rRECS. B] = RECH.[)]
bs ifbng=c¢
seq(bs, bng) = wag . M wm - Mv>>mwmﬁmmm

bp; seq(bn, brg) if bs = bp;bn A bng #e

seq(bn +bn/, bng) = seq(bn, bng) + seq(bn’, bng)

FIGURE 7.11. Transformation to canonical form

decidable. More precisely, we shall give an algorithm that given two behav-
iors b; and by will decide whether b1 C by without using R1 and we shall
show that it is sound and complete.

The algorithm proceeds in two stages. First it transforms the behaviors
into canonical forms and then it checks the ordering between the canonical
forms. A behavior is in canonical form if it is constructed according to the
nonterminal b of the following grammar:

bn = bs | bn+bn
bs u= ¢ | bp | bp;bn
bp := 7l | % | tCHANT | B | FORK, bn | RECS.bn

"This means that a canonical behavior is a sum of behaviors. A summand is
either € or it begins with a primitive behavior and is possibly followed by
a canonical behavior. A primitive behavior is one of rli, r?t, t CHAN T, B,
FORK, bn and RECS.bn, where the last two have bodies in canonical form.

Each behavior 5 can be transformed into an equivalent canonical behav-
ior [b]. The translation is specified in Figure 7.11 and proceeds according
to the structure of the behavior. It uses the auxiliary operation [---] that
will transform a type into a form where bound behavior variables are o-
renamed in the manner of deBruin indices. So for example int —RECSL-51

212 Hanne Riis Nielson and Flemming Nielson

bs ord, bsp bs ord bng
bs ord bsp bs ord bng + bng
bs ord bng bn ord bng, bn' ord bng
bs ord bng + brg bn + bn' ord bng
bp ord, bpo
eord; € llnllvﬁ ord, bPo

bp ord bpy bn ord bng
bp; bm ord; bpp; b

7t ord, 71t r?t ordy, r7¢
t CHAN r ordy, t CHAN 7 p ord, 8
bn ord bng

FORK, bn ord, FORK; bng

bn[8 — B'] ord brg[fo — B
RECS. bn ord, RECf. bng
if " ¢ FV(REGS. bn) U FV(RECS,. bnp)

FIGURE 7.12. Checking the ordering for behaviors in canonical form

int and int —®2%%2-82 jint will be transformed into the same type int
—RecBB’ nt for some unique B’. Furthermore, [---] uses the auxiliary
function seq that takes two behaviors bn; and brno in canonical form mb.m
constructs a behavior equivalent to bn;;bng but in canonical form. Basi-
cally, the translation applies the laws mH,. 52, K1, mum. E2 to ensure that
behaviors are written in a certain form. The translation could easily be
extended to remove duplicate summands.

Lemma 7.5.4. For all b: [b] is in canonical form and [b] = b.
Proof. It is easy to verify that [b] is in canonical form. The equivalence of
b and [b] is proved by a straightforward structural induction on b and uses
seq(bn, bng) = bn; bng,
which can easily be proved by structural induction on n. O
Given two behaviors bny and bns in canonical form, we can now present a
method for deciding whether bn; C bng holds. It is presented in Figure 7.12

in the form of an inference system that axiomatizes the three relations ord,
ordg, and ord,. We shall see that dn; ord bnz amounts to bn; C bng, that

7. Communication Analysis for Concurrent ML 213

bsy ord, bsy amounts to bs; C bsz, and that bp, ord, bpz amounts to
bpy T &po.

Intuitively it should be clear that the inference system may be converted
into the definition of three terminating functions ord, ord,, and ordy, defined
by pattern matching upon their arguments and with a catch-all case giving
false. The only case that is slightly nontrivial is

ord(bs, bng + bnjy) = ord(bs,bny) Vv ord(bs,bny) Vv false,

since it is the only case where more than one rule may be appropriate.
Formally, we verify our claim that Figure 7.12 defines an algorithm by

Lemma 7.5.5. The relations ord, ords, and ord, are decidable.

Proof. Define size(b) to be the size (say length of presentation) of the
behavior b. Define the measure u by

(b, ord bng) = 2 + 3(size(bn;) + size(bna)),
p(bsy ord, bsy) =1+ 3(size(bs1) + size(bsy)),
#(bp1 ord, bpa) = 0 + 3(size(bp;) + size(bpa)),

and note that u always produces a nonnegative integer. Next inspect all
rules of Figure 7.12 and note that the measure # of the conclusion is always
strictly larger than the maximum of the measure # of the premises. This
shows that an inference tree for a statement has height at most the measure
4 of that statement. Since there are finitely many binary trees of a given
height it would suffice to search each one in turn. O

Soundness of the method is expressed by

Theorem 7.5.6. If [b] ord [bo] then b C by; furthermore, the inference of
b C by need not use R1.

Proof. Using Lemma 7.5.4 it suffices to prove the (stronger) result

if bn ord bng then bn C brg, (1)
if bs ord; bsp then bs C bsg, (2)
if bp ord, bpy then bp C bp,. (3)
The proof is by a straightforward induction on the inference tree. O

To prove completeness of the algorithm we shall first give an alterna-
tive formulation of when bn ord bng. First we define E(bn) as the set of
summands of bn:

(bs) {bs},
S(bn+bn’) = R(bm) U ().

Il

214 Hanne Riis Nielson and Flemming Nielson

Then we have (reminiscent of the Egli-Milner ordering)

Lemma 7.5.7. bn; ord bns if and only if for all bs; € 2(bn;) there exists
bsz € Z(bns) such that bs; ord, bss.

Proof. The proof of “only if’ is by a straightforward induction on the
inference tree of bm; ord bny (tracing the lower part involving o.a only).
‘The proof of “if* amounts to a straightforward construction of an inference

O
tree.

Theorem 7.5.8. If one can infer b € by without using R1, then [b] ord
[bo].

Proof. We prove that [---] ord [---] is a model for --- T ---. Consult
Appendix 7.D for the details. a

To see that we do not have a counterpart of the law R1 consider the
canonical behavior RECS.(r!int; 8 + ¢). Here

S(RECH.(rlint; B + €)) = {RECS.(rlint; § + €)},

B(rlint; RECH.(rlint; B + €) + €) = {rlint; RECH.(rlint; B + €), €},
and it is easy to see that neither

RECS.(rlint; 8 + ¢€) ord, rlint; RECA.(rlint; 5 + ¢),
nor

RECH.(rlint; 8 + ¢€) ord, e.

Towards a Larger and Still Decidable Ordering

There are two approaches that may be pursued in order to extend our
algorithm for deciding C to allow also the use of R1. One is to oosooﬁu.&mm
on R1 and to build further knowledge into the algorithm. The caveat of this
approach is that one risks non-termination due to the unbounded number
of times that R1 might be used. To overcome this one might try to apply
automata-based techniques to discover when we repeat the same “pattern
of recursion.” This leads (we believe) to the second approach, where we
must extend Figure 7.2 with new axioms and rules in order to ensure the
soundness of the automata-based techniques: in particular, rules that allow
some kind of induction to be performed. An example (perhaps derived) rule
might allow one to deduce RECS.by C b from by[8 — b] C b (under suitable
side conditions).

This then raises an important question. If we decide to extend Figure 7.2,
does this invalidate the other results we have established? Let us define an
admissible ordering to be an inductively defined ordering between U&@ioﬁ
such that (i) it is a simulation, (i) all axioms and rules maintain the

7. Communication Analysis for Concurrent ML 215

statements of Facts 7.2.5 and 7.2.6, and (ii) it contains all axioms and
rules of Figure 7.2 (possibly omitting C4 and R1). We believe that all
results (except of course decidability of the ordering) would continue to
hold if T of Figure 7.2 were replaced by another ordering provided it is
admissible,

At present it is unclear which is the better route to pursue in order to
obtain a decidabie ordering that is still sound with respect to the simulation
ordering

7.6 Conclusion

"The starting point of this work has been an existing programming language,
namely CML. We have developed a type and behavior inference system
for a subset of this language: as usual the types talk about the sets of
values upon which a program operates whereas the behaviors talk about the
communications (or more generally the computations) that take place when
the program executes. This is formally expressed by the subject reduction
property that states that the execution of the CML program is mimicked
by the evolution of its behavior viewed as a term in a process algebra.

Previous work [151, 152] shows how Standard ML’s type system can be
extended to take care of the concurrency constructs of CML; however, the
polymorphic let-construct is handled in s rather restricted way by dis-
tinguishing between expansive and nonexpansive let-constructs, This is
overcome by our type and behavior system: the behaviors contain infor-
mation that allows us to handle polymorphism properly much as in the
type and effect systems developed for type inference of Standard ML with
references {160).

The structure of behaviors is much more refined than the sets of [160],
as they also express the causality of the various communications that take
place during computation. Because of this the behaviors can be used as a
basis for a number of interesting program analyses of the communication
structure of programs. Let us illustrate this with a few examples.

Analysis for finite communication topology

A CML program may create unboundedly many processes and channels,
Since hardware is finite, an implementation may have to map many pro-
cesses and channels to a “smaller” finite architecture. This task becomes
easier if the number of processes and channels created in the program do
not exceed the resources (processors and links) that are available at the
hardware level. Furthermore, a much smaller version of the run-time sys-
tem will be needed: there is no need for multitasking and multiplexing.
In [125] we develop an analysis of behaviors that detects whether a CML
program has a finite topology. As an example consider the behavior

216 Hanne Riis Nielson and Flemming Nielson

FORK, (REC 3. ((p1700; by palag: QQ + _Bo_dbm..nvv

associated with the node function in Example 7.2.2, Here the analysis will
determine that if b does not create any processes and channels then the
nede function will at most create one process and no channels; thus it has
a finite topology. On the other hand, the pipe function has behavior

REC f'. (FORKx (REC 8”. (01 +1)?0; paley ") + polunit))
+ (o CHAN (py +1);
FORKx (REC 8. ({(p1 +1)7e; b; paley; B”) + polunit));
8.

The analysis of [125] will deduce that any number of processes and any
number of channels may be created so the pipe function does not have a
finite topology.

Processor allocation

Often it will be the case that the number of processors of the hardware is
less than the number of processes created by the CML program. Thus one
has to resort to multitasking and decide how to allocate the various pro-
cesses on the available processors. Basically there are two approaches: in
static processor allocation it is decided at compile-time where all instances
of a given process should reside at run-time, whereas in dynamic processor
allocation it is decided at run-time. In both cases it is useful to have in-
formation about the requirements of the processes; for example, we might
like to know which channels are needed for communication and how many
times. In [126] we present an analysis showing how such information can
be obtained from the behaviors. We illustrate this for the pipe function.

In the case of static processor allocation we will decide that all processes
corresponding to the oceurrence of fork, in the CML program will reside
on the same processor. Thus the requirements of that processor are obtained
by accumulating the requirements of all the processes with label . So for
the pipe function we see that there will be many inputs over channels in
p1 + 1, many outputs over channels in g2, and many outputs over channels
in pg. The latter result may be surprising because each of the processes
labeled 7 will communicate at most once over po- However, there may
be many processes labeled 7, and since they all will reside on the same
processor this processor must be prepared to do many communications
over pg. The situation is different for dynamic processor allocation. Here
we do not accumulate the requirements of each process with a specific
label; instead we estimate the mazimal requirements of all instances of the
process, and for the pipe function we get that each process labeled 7 will
communicate over py at most once; the results for p; + ! and p2 are as for
static processor allocation.

7. Communication Analysis for Concurrent ML 217

Acknowledgment

Discussions with Torben

Amtoft, Fritz Henolei i
Pierre Tatpin, ot e englein, Pierre Jouvelot, Jean-

sen, and Mads Tofte have been most stimulating.

Appendix 7.A Syntactic Properties of the Typing
System

Huwoom of H.sz_..-m 7.2.8. We need a somewhat stronger induction hypoth-
mmHm.\Ummum tenv’ > tenv to mean that Dom(tenv') = Dom(tenv) and that
tenv'x = tenvzx for ali ¢ < Dom(tenv). We then claim that

iftenvl-e:t & b and tenv’ > tenv then teny’ - e:t &b

The proof is by induction on the structure of the inference of teny - e :
¢ & b. In the case of let-polymorphism the ke ,

t&b Yy observation is that ts' > ¢g
implies FV(ts') C FV(ts). To see that this is indeed the case let s > ¢

be chosen such that FV(ts) = FV (1), f
. . = y for example b i -
tified variables of ts to ground terms; since ts' S el o

N;\?m\v. C FV(t) and this establishes the result.
is then immediate that gen(teny’, bt > gen(tenv, bt.

Proof of Lemma 7.2.10. This is a structural ind

uction on e usj
7.2.6. Only the case of Let-polymorphism is non. sing Fact

trivial. In this case assume
tenv - let o = ¢ iney:t & b.
Then by;8, C b and

teny €1 : wH hﬁ @Hu
tenvlz — ts] ey ¢ & ba,

where £s = gen(teny, b1) 1. Let {adp = m_ﬁxﬁb/;ﬁ.._ﬁ\@m:& U FV ()

-

and let ;s be a renaming of &35 isti i 9
0 to fresh and distinct Yo Bo po
Then the induction bypothesis gives variables db 2y ro

0 (utenv) e, : Out1) & 0(u b1),
Qﬂmaeu?lmﬁmﬁlmm..?Iwmmou_

and the former can be rewritten ag

ftenv - e, 10(n 1) & 08,

Let t5' = gen(f tenw 861)(0 (1 t1)). O !
Lomema 705 ke , (# t1)). One can prove that ¢s’ - f¢s, and

(Btenv)(z s ts'] ey : 0t & 8 bo.

218 Hanne Riis Nielson and Flemming Nielson

From Fact 7.2.6 we get 88,;0b: C 65, and so using the rule for let-

polymorphism we get the required
ftenv-let z=e iney : 0t & 6.

This completes the proof. O

Proof of Lemma 7.2.12. We proceed by induction on the structure of
the inference tenv & e : £ & b. Due to the assumption that tenv’ redefines no
identifier of tenv all cases except let-polymorphism are straightforward,
in particular the cases for variables and abstraction. For the case of let-
polymorphism it suffices by Lemma 7.2.8 to show

Mm:@gc tenv’, b))t = gen(tenv, by)ty,
for which it suffices to show

FV(t)\(FV (b)UFV (tenv)UFV (tenv')) 2 FV(t)\(FV{(b1)U
FV (tenv)).

For this to be false we must have y € FV (1), v € FV{(tenv'), v ¢ FV(b1),
and v ¢ FV(tenv); but then v &€ [V (tenvt e: t&b) and so v € FV(ty),
and we have the desired contradiction. a

Proof of Corollary 7.2.13. Let X = FV(tenv') \ FV (tenv). Define the
substitution # such that Dom(#) = X, such that {y;,7%} € X A 071 =
842 = T = 72, and such that {@#y | v € X} is disjoint with all variables
occurring in the proof of tenv - e : t&b. Then FV(0(tenv’)) N IV (tenv
e: t&b) = 0. It follows from Lemma 7.2.12 that tenv (6(tenv’)) F e :
t&b. Next define the substitution #' such that Dom(#'}) = {8y | v €
X} and ¢'(6y) = v for all v € X. It follows from Lemma 7.2.10 that
§'(tenv) ' (6(tenv”)) + e : 8'(t) & ¢'(b). Clearly &'(tenv) = tenv, ¢/(t) =
t and #'(b) = b by the assumptions on {0y | ¥ € X}; furthermore
¢'(8(tenv’)) = tenv'. This proves the result. o

Proof of Lemma 7.2.14. From the assumption and Lemma 7.2.8 we have
tenv(z — gen(tenv,e)to] - e : t &b (1)

We shall now assume that the variables of (1) not occurring in gen{tenv, €)tg
are disjoint with all variables of

tenv + e : tp & e (2)

except those in FV(tenv); this is merely an application of Fact 7.2.11.
Furthermore we assume that all defined identifiers of e have been alpha-
renamed so as not to occur in tenw; this ensures that no alpha-renaming is
needed when performing the substitution eleg/z].

We now want to modify (1} by replacing each node

7. Communication Analysis for Concurrent ML 219

tenv[z — gen(tenv, eltplteny’ - & : ¢ &V
by

tenvienv’ - ¢ : ' &b ife’ # zorz € Dom(tent'),
tenvieny’ F ey : t' &b if ¢ = 2 and z ¢ Dom(tenv').

The first part of this transformation is immediate, whereas the second part
needs to be obtained from (2). First note that

gen(tenv,e)tg =t and € C ¥

and that @4o = ¢’ for some substitution # defined on FV () \ FV (tenv).
Using Lemma 7.2.12 we get

tenvieny’ & eg : tg & ¢,

where Dom(tenv’) N Dom(tenwv) = § follows from the alpha-renaming on
e, and FV(tenv') N IV (tenv F g : 19 & €) = O follows from the assumption
that all variables of (1) not occurring in gen(tenv, €)ty are disjoint with

those of (2) except for those in FV (tenv). We now use Lemma 7.2.10 and
Fact 7.2.9 to get

tenvtenv’' F ey @ t & V.

This shows the well-definedness of the transformation.

The final step is to prove by structural induction that the constructed
structure is indeed a proof of

tenv b eleg/z] : t & b.

This is a straightforward induction on the proof tree for (1). In the case of
let-polymorphism note that

FV(tenv) = FV (tenv[z — gen(tenv, €)tg))
because F'V(gen(tenv,€)to) = FV(to) N FV (tenv).]

Appendix 7.B Semantic Properties of the Ordering

Proof of Proposition 7.3.2. We show that the laws of Figure 7.2 fulfill
the requirements, that is, whenever b; and b, are closed, b; C by and

= _:_

then there exists p; and by such that

by =72 by, p1 CF py and by C bs.

220 Hanne Riis Nielson and Flemming Nielson

For open behaviors the result follows from Fact 7.2.6.

The case P1 is immediate.

The case P2. Then b; C bs because &y C by and by C b3. From by =Pt by
and the induction hypothesis (IH) we get

@M HVwﬂm TM._ ﬁ“_.v
p1 T2 py and by C b,

for some ps and by. By induction on the length of the derivation sequence
of (1) we will show the required

vw vam vw- AMV
p1 T2 p3 and by T bs.

If the length of (1) is 1 then the induction hypothesis gives

vw vaw _uw_
p2 C2 p3 and by T by,

and (2) follows using P2. For the induction step assume the length of (1)
is n -+ 1. Then N
by = @w =Pz ku

and IH applied to the first step gives

&w Hv_u..u _uwu
¢ £ p} and b, C bl

Now p4 = e is the only possibility and also by # +/ must be the the case.
Next, IH applied to bf =72 by with b T b% gives

bt =73 s,
p1 C2 p3 and by C ba.

Thus we have bs —P3 by and the result follows.
The case C1. Assume by;bs C ba;by because by C by and by C by.

Furthermore assume
@Hm bs = _uu.

There are two interesting subcases:

(#) by =P b, and by =b;be,
(i) b =P/ and by =by.

In subcase (i) IH gives by =72 b, p1 T2 po, and b T bh. Since b) # v/
we have by # +/; s0
ba; by =2 by; ba.

7. Communication Analysis for Concurrent ML 221

Using muH_m.uN and C1 we get by T bj; b, as required. In subcase (i) IH
gives by =2 b}, p1 C9 py, and +/ T bj. Thus b, = +/ must be the case and

ba; by vaﬂ\m by.

The result then follows.

The case C2. Assume b; + by C by + bq because b; T by and bg T b,.
Furthermore assume that; B

b1 + b3 =P by,

The only interesting case is when b; =P b; for i = 1 or ¢ = 3. Then IH
gives byyy =P2 by for p; C? py and by o bz. So we get the required

bo + by “vmm ba.

The case C3. Assume FORK, b; C FORK, ba because b; C &,. Further-
more, assume

FORK, by =Pt b,.

The only interesting case is when p; = FORK, b; and by = €. Clearly

FORK, by =72 € for pp = FORK, by, and since FORK,, by C? FORK, by and
€ C ¢ the result follows.

The case C4. Assume RECS.b; C RECB.b; because by, C b,. Further-
more, assume

RECH.b; =P b,.

The only interesting case is when p; = ¢ and b1 = b1[8 — RECS.b;]. Clearly

REG.by = b3[f — RECH.Dy).
We have
b [8 — RECB.b;] C RECS.b,
C RECS.b;
C b2[B — rECH.B2]
using P2, R1, and the assumption. Thus the result follows.
The case S1. First we study by; (b2; b3) T (b1;b2); bs. So assume

bi; (bz; ba) =P b.
There are two interesting cases:

(1) bi=PH and b= (B2 b3),
?uu by =P)\ and = bo; b3.

F mz_uommmm (i) we get by;b2 =P b);b, and then (b1;b2); by =P (b];b2): b
Since p C° p and b}; (by; b3) C (b1;b2); b3 (follows from 51) we get the

222 Hanne Riis Nielson and Flemming Nieison

. . P
required result. In subcase (i)} we have by; ba =P by and then (by; b2); b5 =
bg; b3. The result follows using P1.

Next we study (by;b2); b3 C by; (be; b3). So assume

?Hm@wvm @m =P p,
Tt cannot be the case that by; b2 =7 +/; so the only interesting case is when

b1ibe =P band b = b; ba.
‘We have the two subcases

(1) bi=PH and b=bliby,
(##) by =P+ and b=b..

. 8 Q.
; ; (ba; 15 (be; b3), and since p C° p an
e (i) we get by; (ba; b3} =P by; (bo;b3), .
Mb\ m Mu_wowM _H:m. (bo; b3) (follows from S1) we get the required result. In
13 H = 1 1

subcase (i) we have by (be; bs) =>P be;ba, and since b == bg; bz the result

mom_”_oMM. case S2. First we study (b1 + b2); b3 C by; b3 + bo; b3. So assume

(b1 +b2);b3 =P b.

There are two interesting subcases:

(1) bi+bz=PH and b=1;by,
(@) bi+b=?y and b=b.

; i i is when b; =P b fori=1ori=2.
1) the only interesting case is w. 5
H_HH_WMMUMWM Qs b'; bz, and hence by; b3 + b b3 HvM b, %w. HMHM\ H.MH.HHM mow_po,”w
: case (i) i that b; = =
i 1. In subcase {%i) it must be the case
mesw H._Hrmn by; bs =P bz, and hence by;bs + bo; by =P b3, and the result
follows.
Next we study by; b3 + be; b3 C (b1 + bo); b3. So assume

by; b3 + bp; bz =P b.

j == i = 2. there
The only interesting case is when b;;63 =P b for i == 1 or { = 2. Now
are two interesting subcases:

(1) bi=>Pb, and b=blbs,
(#) b; =P and b=b;.

In subcase (i) we get by + by =7 b} and hence (b + ewﬁvmnnvv b; %w: _.,MMM
result follows using P1. In subcase (%) we mmg @W w._. by =P / and he

;b3 =P by Again the result follows from P1. .)
?H‘H,.mewmmwm El. mm,#mﬂ we study b C ¢; b. So assume b =P b. Clearly ¢;b =
b =7 b and the result follows vsing P1.

7. Communication Analysis for Concurrent ML 223

Next we study €;b C b. So assume &b

=P b. There are two interesting
subcases:
(1) e=%¢ and b=¢b (and p =¢),

() e=¢y/ and bh=p (and p =¢).

Clearly b =€ 5. In subcase (?) the result follows from using the assumption
(E1) that €5 C b and in subcase (i) it follows using P1.

The case E2. First we study b;¢ b. So assume b€ =P b. There are
two interesting subcases:

(1) b=V and b=1b's¢,
(%) b=2P/ and b=

In subcase () the result follows using ¥;e C &/ (B2)
be the case that b = ¢ and P = e Clearly ¢ =€
because e C ¢.

Next we study b C bie. So assume b =P b, If) # +/ then bj¢ =» b;e,
and the result follows because b Cbhie (E2). Ifbp = v then p = ¢ must be
the case. So we have bye = ¢ =*¢ ,/, and since v £/ the result follows.

The case Ji. We shal] study b; C by + by for i = 1 and ¢ = 2. So assume

b; =7 b. But then b1 + b2 =P b and the result follows using P1.

The case J2. We shall study &+ b C b since b C b+ b follows from J1.

- In subcase (#) it must
€ and the result follows

RECH.b =P b,

The only interesting case is when p = ¢ and b = b8 — RECH.b]. Since
BB — RECS.5] =€ b3 — RECS.b] the result follows using P1.
Next we study [8 — RECS.b] C RECS.b. So assume

b8 > RECS.H] =P b.

We have RECS.b =< b[B s RECB.b] =P b and the result follows using P1.

_H_rmnmmmw.m.smmwmﬁ consider RECS.b C RECSH' b8 —) for ¢
FV(b). So assume

RECH.b =P b,

The only interesting case is when p=candb =p[F REC/A.b]. Then
RECS'"B[8 = '] =P b[B s RECS'.B[F s 2.

That b8 — RECS.H) T b(B — RECS B[s B']] then follows from R1, and
pc? p is immediate. The other direction is similar., [}

224 Hanne Riis Nielson and Flemming Nielson

Appendix 7.C Semantic Properties of the Typing
System

Proof of Lemma 7.4.2. We proceed by structural induction on E. The
interesting case is when £ = let = = E; in es. Then we have

tenv b Eleg] : £ & b (because tenv eg : tg & bg)

because

tenv - Eyleg] : t1 & by (because tenv - eg : tg & bp),
tenv(z — tsi| Fex: t & by,

b1;02 C b,

tsy = gen(tenv, by)t;.

By the induction hypothesis we get
tenvienv’ b Fqleg] : ¢ & by (because tenvienv’ & e : ¢y & by),
and by Corollary 7.2.13 we get
tenvtenv’ [z ts;) Fep : t & bs,
and clearly
bi;b2 C b,
and finally
ts) = gen(tenv tenv’, b))

_umnmcmmm_a\@mze,vmm;\@&_u%mmmanﬂosmnmm;\@&mkm;“\@bg.
Fact 7.4.1. This completes the proof. O

Proof of Lemma 7.4.4. We proceed by structural induction on E. The
interesting cases are

EwHH.,Ww case o%@ e. Assume tenv - Eleg| €: ¢ & b. Then by; be; o C b and

the premises are tenv - Eleg] : t/ =% t & by and tenv e : t' & ._wm. The

induction hypothesis gives tenv F Ele] : ¢/ —% ¢ & b} where p; b E b1

The rule for application gives tenv - Eleg] e : t & b); ba; bp. Using the laws

P2, C1, and S1 we get p; b};b2; by T b as required.

The case of w E. Assume tenv - w Eleg] : ¢t & b. Then by;ba;bg b
and the premises are tenv i w : ¢/ —% ¢ & b; and tenv - Eleg] ws & bo.
The induction hypothesis gives tenv - Efef] : ' & by where p; by C bo.
From Fact 7.4.5 we have ¢ C by and tenv - w : ¢’ —% £ & € so the rule for
application gives fenv - w Elep] : t & ¢; b}; by. Using the laws P1, P2, C1,
51, E1, and E2 we get p; ¢; bh; by C b as required.

The case of let 2 = F in e. Assume tenv - let £ = Eleg] ine: ¢ & b.
Then by;b2 £ b and the premises are tenv - Eleg] : £, & b, and tenv[z —

7. Communication Analysis for Concurrent M, 225

ts| e :t & by where ts = gen(tenv, by) t1. The induction hypothesis gives
tenv &= Elet] : t & b} where p; ¥} C b,. Clearly FV(b)) C FV(b;) follows
from Fact 7.2.5; so FV (t1)\(FV (tenv) U BV (b1)) C FV(t \(FV (tenv) U
FV (b)), and thereby ts’ > ts, where ts’ = gen(tenv, b)) ¢;. Using Fact 7.2.8
we get tenvlz — ts'] F e : t & by and then the rule for let-polymorphism
gives tenv - let z = Elep] in e : ¢ & bf;b,. Using the laws P1, P2, C1,
and S1, it follows that p; 13b2 C b,]

Proof of Proposition 7.4.6. We proceed by induction on the inference
for e — €’. Most cases are similar, and so we only consider the case of
1et-polymorphism. For this assume that E{let z = w in €] = Ele[z — w]|
and

cenvi-Ellet z=wine|:1 & b. (1)
In this inference we can identify the node corresponding to the hole of E:

cenvbletz=wine:ty & by, (2)
Its premises are cenv - w : t1 & by and

cenv(z — ts| ety & by, (3)

where ts = gen(cenv, be)t1 and be; b3 C by. From Fact 7.4.5 we have ¢ C by
and

cenvhw:t &e 4)

We shall now apply Lemma 7.2.14 to (3) and (4) and get cenv - elr — w) :
t2 & b3. The laws P1, P2, C1, and E1 give b3 C by 50 using Fact 7.2.9 we
get

cenv b= ez — w) : ty & by. (5)
Using Fact 7.4.3 with (1), (2), and (5) we get the required
cenv b Elefz —~ w]] : t & b.

"This completes the proof. |

Proof of Proposition 7.4.7. We proceed by induction on the inference
for matching.

The cases of send/receive. Assume
L . .y (eilei?)
((send (pair ¢i w)), (receive ci)) " (w,w)
and

cenv - (send (pair ¢i w)) : ¢; com by & ¢,

cenv - (receive ¢i) : ty com by & €.

226 Hanne Riis Nielson and Flemming Nielson

Furthermore, assume cenv ¢i =t chan 7. Then the typing rule for weakly
evaluated expressions gives t; =ta = ¢ and cenv - w: ¢ & by, wmm.mﬁﬁwm?
more by 2 vt and by 3 77t Now, B cenv ci! =rlt and B cenv ¢i? = rli,

and so we only have to show rlt; € = by and 77¢; € T by, but this is immedi-
ate. (dsds)

The case of heads. Assume ({choose {cons w; wa)),ws) ~» (e1,€3)

ﬁﬁ: .ANV
LY

because (wy, w3) (€1, e3) and

cenv b {choose (cons wy we}) : {1 com by & ¢,
cenv b ws : i3 com bs & €.

From the typing rule for weakly evaluated expressions we get cenu F wy :
t; com by & b for some & I ¢ and where by 2 bp. dem. m.m.nﬁ 7.4.5 we
have cenv - wy : 1 com by & €, and the induction hypothesis gives

cenv e 1ty & b and cenvh ez ts & b,

where (B cenv dy);b) C bp and (B cenv da); b3 E ba. Using the laws P2
and J1 we get (B cenv dy); by C b1 and the result mozos.m..

The case of tails. This is along the lines of the previous case and we
omit the details.

The case of wrap. Assume ({wrap {pair w; wa)},ws)
(d1,ds)
S

(dgs) (wq e1,€3)

because (w;,ws) {e1,e3) and assume
cenv = {wrap (pair w; ws)) : t2 com by & ¢,
cenv b ws : 13 com by & €.
From the typing rule for weakly evaluated expressions we get
cenvbw, :f; comby &b and cenvb wg 1ty =ty & b
and by 3O by:bp. Using Fact 7.4.5 we get
cenvbwy 14 comb & e and cenvbwa it 2t & €.
Then the induction hypothesis gives
cenvbep 1ty & by and cenvl es:ts & b5,

where (B cenv d;);b] C b1 and (B cenv d3); b3 E bz. The rule for function
application then gives
cenv b wg ey : ta & € b); by,

and we have to show (B cenv dy); € b);bo C ba. But this is MB.Em&wwm. .
The case of swop. This case is straightforward and we omit the details.
This completes the proof. O

7. Communication Analysis for Concurrent ML 227

Proof of Theorem 7.4.8. We proceed by induction on the inference for
concurrent evaluation.

The case of sequential evaluation. Assume that
CI & PP[pi — E[e]| —p: CI & PP[pi— E[e']]
because Ele] — Ele']. Furthermore, assume that CT &PPlpi — Ele]] is
cenv-described by PB[pi — b). In particular this means that
cenvh Ele]: t & b
for some ¢. From Proposition 7.4.6 we get
cenv - Ele'] : t & b.
Clearly b = b, and thereby

o~

PB[pi — bl =<, PB{pi ~s b,

We have A (cenv, PB[pi ~ b)) ¢ = e. Taking PB' = PBlpi — b we get
that CI&PPlpi — E[e']] is cenv-described by PB’ as required.
The case of channel allocation. Assume that

CI & PPIpi — Efchanmel; ()]} —sCitam: <

CI U {ci} & PPpi — Elci]],
where ¢i ¢ CI. Furthermore, assume that CT. &PP[pi — E[channel; ()]}
is cenv-described by PB[pi — b]. In particular this means that

cenv - Elchannel; (}]:t & b (1)

for some ¢. In this inference we can identify the node corresponding to the
hole of and it will be of the form

cenv - channel; () : ¢ chan r & by, (2)

where ! € r and by; ba; ¢’ CHAN r T by, where e £ b and € C b, (follows from
Fact 7.4.5). Now define cenv’ = cenv(ci — t' chan 7]. Then we can replace
cenv in (2) and (1) by cenv’ and thus obtain (2} and (1'); by Lemma 7.4.2
we still have (1) because (2'). From (2') we then get

cenv’' it chan r & .

Also, ¢ CHAN 7; ¢ C by follows from the laws P1, P2, C1, E1, E2, and
J1; s0 we can apply Lemnma 7.4.4 and get

cenv' - Elci] : t & ¥, (3)

where ¢ CHAN r; & L b. Clearly # cHAN Ty b =i’ cnan T gy , and using

that C is a simulation ﬁ:.ovoﬂaosa 7.3.2) we get b =7 § for some p and b

satisfying ' CHAN 7 C2 p and & C b. Now p = ¢’ CHAN r must be the case;
S0

228 Hanne Riis Nielson and Flemming Nielson

PBlpi > b] =&, 5885 * PBlpi 1 B].

Clearly A (cenv’, PB[pi — b]) CHAN ¢i = t' CHAN 7 as required. Taking
PB' = PB[pi — b] we get from (3) and Fact 7.2.9 (and b' T b) that
CI U {ci}&PPlpi — E[ci]| is cenv’-described by PB’.

The case of process creation. Assume that

FORKy Dig

CI & PPlpi, — Elfork, w|| Tpipiz 3
CI & PP[piy — E[O]llpiz — w0,

where piz ¢ Dom(PP) U {pi1}. Furthermore, assume that CI&P Ppi; ~—
E[fork, w]] is cenv-described by PB|piy +— b;]. In particular this means
that

cenv - E[fork, w]:t & by

for some t;1. In this inference we can identify the node corresponding to the
hole of E. It has the form

cenv - fork, w:unit & bp, (V)

where by; ba; FORK, b C by for some b and where € C by and € C by follows
from Fact 7.4.5. We also have

cenv F () :unit & ¢,

and (FORK, b);€ C by follows from the laws P1, P2, C1, E1, E2, and J1.
We can then apply Lemma 7.4.4 and get
eenv F E[Q)] : t1 & bY, (2)

where (FORK, b); b} C by. Clearly (FORK, b);by =%~ b b, and using

that € is a simulation (Proposition 7.3.2) we get b =7 by for some p and
by with FORK, b C2 p and &) C b;. Now it follows that p = FORK, ' for
some b where b C }'. Also we have

PBlpiy v by] =50 ¥ PBpiy — by][piz - b'].

Pi1,piz

We have A (cenv, PB[piy — bi][piz — b']) FORK, pia = FORK, b as
required. We shall now take PB’ = PB(piy — b;][piz — ¥]. From (1) and
Fact 7.4.5 we get _

cenv b w:unit —Pt & e
for some type £, and thereby
cenvbw O:t &b

7. Communication Analysis for Concurrent ML 229

Using this and (2) together with Fact 7.2.9 (and ¥, C &,
2., CbandbC ¥
' ' 1 1 b we ﬁ
that CI&PP(piy — E[()][pia w()] is cenv-described by PR’ e se
The case of matching. Assume that
Ccr & &U.muﬁﬁﬁ. = .m”u. ﬁmu\.b.n .EHH_?@.M = m.w—m%u.n ..Ew: .l%nﬁw__n“d
»Piz ?
CI & PPlpiy — Ejey]] [piz = Eyles]],

il,ei7)
~

(e
Wm.ﬂmcmm AEHz_,Wu& Mmm?m&. Furthermore, assume that 7T & PP[pi; +-
18yne w] [piz — Ep[sync ws]] is cenv-described b PBlpi]

bo]. In particular this means that Y PBlpi bl

cenv - E)[sync wn) : ¢; & by and ceny - Ealsync wo) : tp & by
.mon some ¢; and 3. In these inferences we can identify the node correspond-
ing to E.E hole of E, and B, respectively, and they have the forms

cenv I~ sync wy 1 t] & b, and cenw - sync ws : th & by,

where b11; b2 bo1 C m.. and boy; bossbgs C By
meﬁammm N, 1;022;0p2 L 0o for some &o“_. and @om. The

cenv 1wy 1§ com by; & byp and cenw - we : £ com bgg & boo,
and from Fact 7.4.5 we get eC b1y, e Cyg, e bay, € C byg, and

cenv b wy :] com by & € and ceny - wa : th com by & €.
Using Proposition 7.4.7 we get

cenvlb-er :t; & by, and cenv ey : 5 & b,

Wﬁmﬂm (B cenv cil); b, C by and (B cenv ¢i?); by T bys. Using the laws P1
2, CL, E1, and J1 we get (B cenv cil); by C by and (B cenv ci?); bhe C 4
We can now apply Lemma 7.4.4 and get e

cenv = Eyfer] : ¢y & B and cenv - BEpley] 1 1 & b5, (1)

éwwum%m mmw@e cil); b1 £ by and (B cenv ¢i?); b T b, Clearly (B cenv ci!); ¥,
n.v “ b and (B cenv ci?); b =B cenv cit) b3. Using that C s w
simulation (Proposition 7.3.2), we get by =P b1 and by =2 § M..&

(B cenv cil) C? p1, (B cenv ci?) P P2, ¥ C oar and b, C bo. It mu“pcm_u oMM

the case that (p;,ps) = ((B i1 ;
b mmMH p2) = ((B cenv .Q.vu (B cenv ci?)) = (rlt, r7t) for some r

PBIpir = billpiz - bo] =557 PBIpiy s 6][pig v).

Now A (cenv, PB[pi; — By][piy ba)) (eil, ci
. s : b Ba2)) (cil, ci?) = (rlt,r74) as required
Taking PR’ = PB[pi; bi][pig — bo] we get that) aec:

CI&PP(piy ~ Eile]][piy — Ezles]) is eenv-described by PB,
using (1) together with Fact 7.2.9 (and b, C b; and b, T by). O

230 Hanne Riis Nielson and Flemming Nielson

Appendix 7.D Decidability Issues Concerning the
Orderings

Proof of Lemma 7.5.2. We prove the two implications separately. Prov-
ing “«<": Let & 5 ¢” and let w € L£(¥'). Then there exists

B =P b = Pn b with b =/

such that w = p/ ...p}, (and where some p; may be € and hence disappear).
By ¥ 5 b" we get

N N

with b} 5 b¥ and p} 2 i for all i. As each p] is either ¢ or of the form
1| ¢ it follows that pf = p} for all . Also, b}l equals /. It follows that
w € L(b").

Proving “=": We define

S = {(b1,b2) | L{b1) € L(b2),Fp b1,Fp b2, =N by v b2} U {(Vh)}

and show that S is a simulation on closed behaviors; since ¥ S b7 the
desired ¥ T b” follows. First we note that v/ S b if and only if b = /. Next
let (b1,02) € S\{{(/,+/)} and suppose b; =P by;; if by; # +/ we have
(using Lemma 7.5.1) that Fp p1,Fp b11, =N 1, =N bra. We now perform
a case analysis. N

N.._L Ifpy =eand by # a\ we have by =° by with mv:“@uv € § and
(¢,€) € 89, where we have used Lemma 7.5.1.

(i) fpy = ¢ and by; = +/ we have e € L(b), and hence ¢ € L(b3), so
that by =< +/ with (+/,+/) € S and (c,€) € S°.)

(tit) If pp = 1! ¢ (for some 1 and t) we have v:*"ev +/, so that
mw € L(b) and pyw € L(b2). Hence by =3P by; = +/. From Lemma

7.5.1 we have

L) ={w | prw € L{t1)},

h@uwv = .T,c wwuwac = hAWNVHT
and since £(b) C L(bz2) we get L(b11) € L(bs). Using Lemma 7.5.1 we
have Qwﬂ..@ﬁ.v € 8§ and @fﬁuv € §9. O

Proof of Lemma 7.5.8. We inspect each of the laws:
The case P1: We shall prove the (stronger) result

bn ord bm, . (1)
bs ord; bs, (2)
bp ord, bp. (3)

7. Communication Analysis for Concurrent ML 231

We proceed by induction on the size of the behaviors bn, bs, bp proving (3),
(2), and (1) in order.

First we prove (3). If bp is one of rlt, r?, t CHAN 7, and §, then the
result is immediate from the definition of ord,,. If bp = FORK, bn, then
the induction hypothesis gives bn ord bn and the result follows from the
definition of ord,. The case where bp = RECS.bn is similar.

Then we prove (2). If bs = € the result is immediate from the definition
of ord,. If bs = bp then the result follows from (3) and the definition of
ord,. So assume bs = bp; bn. Then the induction hypothesis gives bp ord bp
and bn ord bn and the result follows from the definition of ord,.

Finally we prove (1). If bn = bs the result follows from (2) and the
definition of ord. So assume bn = bn’ + bn”. Then the induction hypothesis
gives b’ ord b/ and bn” ord bn”. We then get bn' ord bn' + bn” and
bn” ord bn’ + bn”. From the definition of ord it now follows that bn’ -+
" ord bn' + bn”.

The case P2. We shall prove the (stronger) result

bny ord bng and bny ord bng imply bny ord bng (1)
bsy ord, bsy and bs; ord, bss imply bs; ords bss 2)
bpy ordy, bpz and bp; ord, bps imply bp; ord, bps (3)

We proceed by induction on the size of the behaviors bny, bs, bp;, proving
(3), (2), and (1) in order.

First we prove (3). If bp, is one of rlt, r?¢, £ CHAN 7, and 3, then bps = bp,
must be the case because of the definition of ordy, and similarly bps = bpy
also must be the case. The result now follows from the definition of ordp,.
If bp; = FORK, bn; then bp, = FORK, bno must be the case ,cmomEmm
of the definition of ord,, and furthermore bn; ord bng holds. Similarly,
bps = FORK, bnz must be the case and bny ord bnz holds. The induction
hypothesis gives bn; ord bng, and the result follows using the definition of
ord,. The case where bp; = RECS.bn; is similar. ,

Then we prove (2). If bs; = ¢ then the definition of ord, gives that bsy = e
must be the case, and similarly bs3 = ¢ must be the case. Then the result
follows trivially from the definition of ord,. If bs; = bp; then bsp = bps must
be the case because of the definition of ord,, and similarly bss = bps must
be the case. Then the result follows from (3) and the definition of ord,.
So assume bsy = bpy;bn;. Then bss = bpy; bny must be the case because
of the definition of ord,, and furthermore bp; ord bpy and bny ord bng.
Similarly, bsg = bps; bng must be the case, and bp; ord bpz and bng ord bng.
The induction hypothesis gives bp; ord bps and bn; ord bng and the result
follows using the definition of ord,.

Finally we prove (1). If bn; = bs; then Lemma 7.5.7 gives that there
exists bss € X(bny) such that bs; ord, bse. But then there exists bsg €
Z(bna) such that bsy ord, bsz. From (2) we get bs; ord, bss and we have

232 Hanne Riis Nielson and Flemming Nielson

bsy ord bng using Lemma. 7.5.7. Next assume bny = bnj +bnf. From bn) +
i ord bny we get bn] ord bn and bn{ ord bny and the induction hypothesis
gives bn] ord bng and dn{ ord bns. But then the result follows using the
definition of ord.
The case C1. Using Lemma 7.5.7 it suffices to prove the (stronger)
result

if bny ord &ng and bng ord bny then seq(bn;, bng) ord seq(bng, bny) (1)

if bsy ord, bsp and bng ord bny then seq(bsy, bng) ord seq(bsa, bng) (2)
To do this we need

T(seq(bn, bno)) = U{Z(seq(bs, bno)) | bs € T(bn)}, *)

which can be proved by a straightforward structural induction on bn. The
proofs of (1) and (2) proceed by induction on the size of the behaviors
bry, bsy, proving (2) and (1) in order.

First we prove (2). To prove seq(bs;,bns) ord seq{bsz,bns) it is suf-
ficient to prove that whenever bs € X(seq(bsi,bns)) then there exists
bs’ € X(seq(bss,bns)) such that bs ord, bs’, and the result follows from
Lernma 7.5.7. So assume bs € E(seq(bsy, bng)). If bs; = ¢ then bsy = ¢ must
be the case because of the definition of ord,, and furthermore bs € X(bng)
must be the case. From bnj ord bny and Lemma 7.5.7 we get that there
exists bs' € X(bng) such that bs ord, bs'. Since bs’ € X(seqle,bng))
the result follows. Next assume bs; = bp;. Then bsy = bpz must be
the case because of the definition of ord,, and furthermore bs = bpy;bns
must be the case. Using the definition of ord, we get bpy; bns ord; bpe; bng
and the result follows since bpo;bny € E(seq(bpz, bng)). Finally, assume
bsy = bpy;bny. Then bss = bps; bne must be the case because of the def-
inition of ord,, and furthermore bp: ord bps and bny ord bny. From bs €
E(seq(bp1; bny, bng)) we see that bs = bpy;seq(bny, brna). The induction hy-
pothesis gives seq(bny, bng) ord seq(bns, bng). Thus we have bp; ; seq(bn,, bns)
ord, bpa; seq(bng, bny) using the definition of ord,; and since bpg; seq(bng, bng)
€ Z{seq(bpz; bng, bny)), this is the required result.

Then we prove (1). To prove seq(bny,bng) ord seq(bns,bny) it suffices
to prove that whenever bs € X(seq(bni,bnz)) then there exists bs’ €
B(seq{bnz, bny)) such that bs ord, bs’, and the result follows from Lemma
7.5.7. So assume bs € X(seq(bmy,bng)). Using (*) this means that bs €
X(seq(bs1,bng)) for some bs; € X(bn;). From bn; ord bny and Lemma
7.5.7 we get that bs; ord; bsp for some bs; € E(bng). Then (2) and Lemma
7.5.7 gives that there is bs' € X(seq(bsq,bna)) such that bs ord, bs'. But
bs' € B(seq(bng,bny)) due to (*), and the result follows.

The case C2. We shall prove

if bny ord bny and bng ord bryg then bny + bng ord bng + bny.
Using Lemma 7.5.7 it is sufficient to prove that whenever bs € L(bni +bna)

7. Communication Analysis for Concurrent ML 233

then there exists bs' € E(bny + bna) such that bs ord, bs'. It is immediate
that

B(bn; + bngye) = X(bng) U M@‘;ﬁ.+uv

for i = 1,2. So given bs € E(bny + bng) we have bs € Z(bn;), and Lemma,
7.5.7 together with bn; ord bn;y; gives that there exists bs' € Z(bn;y)
such that bs ords bs'. Since bs’ € X(bny + bny) the result follows.

The case C3. We shall prove

if bn; ord bng then FORK, bny ord FORK, bns.

But this follows from the definitions of ord, ord,, and ord,,.
The case C4. We shall prove

if by ord bny then RECS. bny ord RECS. bns.

But this follows from the definitions of ord, ord,, and ord,.
The case 81. We shall prove

seq(bni, seq(bnz, bng)) ord seq{seq(bn,, bny), bna),
seq(seq(bny, bna), bng) ord seq(bn,, seq(bny, bng)).
Below we show that
seq(bni, seq(bng, bna)) = seq(seq(bny, bny), bng). (*)

Since ord fulfills the law P1 we have bn ord bn for all bn, and the result
follows.

Turning to the proof of (*), note that the result is immediate if bna = ¢,
so henceforth assume that bng # e. In a similar way note that the result
is immediate if bny = €; so henceforth assume that also bns # ¢. We now
proceed by structural induction on bn;.

First assume that bny = bs;. If bs; = ¢ then the result holds trivially
since

seq(e, seq(bne, bnz)) = seq(bng, bna)
= seq(seq(e, bno), bng).
If bsy = bpy then the result follows from
seq(bpy,seq(bna, bng)) = bpy;seq(bng, bns)
= seq(seq(bp1, bnz), bna).
Finally, if bs) = bp;; bn) then the result follows from
seq(bpy; bni, seq(bnz, bna)) bpn; seq(bny, seq(bnz, bns))
= bpy;seq(seq(bni, bng), bng)
= seq(bpy; seq(bnf, bnsa), bna)
= seq(seq(bpy; bny, bna), bna),

It

234 Hanne Riis Nielson and Flemming Nielson

where we have used the induction hypothesis to obtain the second equality.
Next assume bny = bnj + bnf. Then

seq(bn] + bnf,seq{bns, bng))

= seq(bni, seq(bnz, bna)) + seq(bny, seq(bne, bns))
= seq(seq(bny, bna), bns) + seq(seq(bny, bnz), bns)
= seq(seq(bn}, bng) + seq(bnf, bna), bng)

= seq(seq(bnf + bn¥, bns), bns),

where we have used the induction hypothesis to obtain the second equality.
The case S52. We shall prove

seq(bny + bng, bng) ord seq(bny, bng) + seq(bna, bng),

seq(bny, bng) + seq(bng, bng) ord seq(bny + bng, bng).
Clearly we have

seq{bny + bna, bng) = seq(bny, bng) + seq(bnz, bnz).

Since ord fulfills the law P1 we have bn ord bn for all brn and the result
follows.
The case E1l. We shall prove

seq{e, bn) ord bn and bn ord seq(e, bn).

We have seq(e, bn) = bn and the result follows from the law P1.
The case E2. We shall prove

seq(bn, €) ord bn and bn ord seq(bn, €).

We have seq(bn, €) = bn and the result follows from the law P1.
The case J1. We shall prove

n; ord bry + bno

for i = 1, 2. We have Z(bn;) C L{bn, + bns) and the result follows from the
law P1 (for ord,;) and Lemma 7.5.7.
‘The case J2. We shall prove

bn ord bn + bn and bn + bn ord bn.

We have X(bn) = X(bn + bn) and the result follows from the law P1 (for
ord,} and Lemma 7.5.7.
The case R2. We shall prove

RECf.bn ord RECA.bn[8 — 7], (1)
RECH .bn[B — f'] ord RECS.bn, (2)

7. Communication Analysis for Concurrent ML 235

for ' ¢ FV(bn). Clearly bn[8 — 8"] = (bn[8 — B])[8 — B"]. Since ord
fulfills the law P1 we have bn’ ord bn' for all bn'; so in particular,

n[B +— B"] ord (bn[B — B'))[F — B].
From the definition of ord, we then get
REC(.bn ord, RECH .In[B — &),

and (1) follows from the definition of ord and ord,. The proof of (2) is sim-
ilar. g

